
A Modality for Recursion ?

(Technical Report)??

March 31, 2001

Hiroshi Nakano

Ryukoku University, Japan
nakano@math.ryukoku.ac.jp

Abstract. We propose a modal logic that enables us to handle self-referential formulae, including ones with
negative self-references, which on one hand, would introduce a logical contradiction, namely Russell’s paradox,
in the conventional setting, while on the other hand, are necessary to capture a certain class of programs such
as fixed point combinators and objects with so-called binary methods in object-oriented programming. Our logic
provides a basis for axiomatic semantics of such a wider range of programs and a new framework for natural
construction of recursive programs in the proofs-as-programs paradigm. We give the logic as a modal typing
system with recursive types for the purpose of presentation, and show its soundness with respect to a realizability
interpretation which implies the convergence of well-typed programs according to their types.

1 Introduction

Even though recursion, or self-reference, is an indispensable concept in both programs and their specifications, it is
still far from obvious how to capture it in an axiomatic semantics such as the formulae-as-types notion of construction
[17]. Only a rather restricted class of recursive programs (and specifications) has been captured in this direction as
(co)inductive proofs over the (co)inductive data structures (see e.g., [9, 14, 24, 19, 27]), and, for example, negative
self-references, which would be necessary to handle a certain range of programs such as fixed point combinators and
objects with so-called binary methods in object-oriented programming, still remain out of the scope.

In this paper, we propose a modal logic that provides a basis for capturing such a wider range of programs in the
proofs-as-programs paradigm. We give the logic as a modal typing system with recursive types for the purpose of
presentation, and show its soundness with respect to a realizability interpretation which implies the convergence of
well-typed programs according to their types.

Difficulty in binary-methods. Consider, for example, the specification Nat(n) of objects that represent a natural
number n with a method which returns an object of Nat(n+m) when one of Nat(m) is given. It could be represented
by a self-referential specification such as:

Nat(n) ≡ ((n = 0) + (n > 0 ∧ Nat(n−1))× (∀m. Nat(m)→ Nat(n+m))),

where we assume that n and m range over the set of natural numbers; +, × and → are type constructors for
direct sums, direct products and function spaces, respectively; ∧ and ∀ have standard logical (annotative) meanings.
Although it is not obvious whether this self-referential specification is meaningful in a certain mathematical sense, it
could be a first approximation of the specification we want since this can be regarded as a refined version of recursive
types which have been widely adopted as a basis for object-oriented type systems [1, 6]. At any rate, if we define an
object 0 as:

0 ≡ <i1 ∗, λx. x>,

then it would satisfy Nat(0), where i1 is the injection into the first summand of direct sums and ∗ is a constant. We
assume that any program satisfies annotative formulae such as n = 0 whenever they are true. We can easily define a
function that satisfies ∀n. ∀m. Nat(n)→ Nat(m)→ Nat(n+m) as:

add x y ≡ p2 x y,

? Research supported in part by 1999 Overseas Researcher Program of Ryukoku University.
?? This report contains detailed proofs of results presented in [23] as well as additional ones.

or
add′ x y ≡ p2 y x,

where p2 extracts second components, i.e., the method of addition in this particular case, from pairs. We could also
define the successor function as a recursive program as:

s x ≡ <i2 x, λy. add x (s y)>

or
s′ x ≡ <i2 x, λy. add′ x (s′ y)>.

In spite of the apparent symmetry between add and add′, which are both supposed to satisfy the same specification,
the computational behaviors of s and s′ are completely different. We can observe that s works as expected, but s′
does not. For example, p2 (s0)0 would be evaluated as: p2 (s0)0 → (λy.add0(sy))0 → add0(s0) → p2 0(s0) →
(λx. x) (s 0) → s 0, whereas p2 (s′ 0) 0 → (λy. add′ 0 (s′ y)) 0 → add′ 0 (s′ 0) → p2 (s′ 0) 0 → . . . , and more
generally, for any objects x and y of Nat(n) (for some n), p2 (s′x)y → . . . → p2 (s′y)x → . . . → p2 (s′x)y →

It should be noted that this sort of divergence would also be quite common in (careless) recursive definitions of
programs even if we did not have to handle object-oriented specifications like Nat(n). The peculiarity here is the fact
that the divergence is caused by a program, add′, which is supposed to satisfy the same specification as add. This
example shows such a loss of the compositionality of programs with respect to the specifications that imply their
termination, or convergence. It also suggests that, to overcome this difficulty, add and add′ should have different
specifications, and accordingly the definition of Nat(n) should be revised in some way in order to force it.

λµ and its logical inconsistency. The typing system λµ (see [4], and Section 3 of the present paper for a summary)
is a simply-typed lambda calculus with recursive types, where any form of self-references, including negative ones,
is permitted. A non-trivial model for such unrestricted recursive types was developed by MacQueen, Plotkin and
Sethi [22], and has been widely adopted as a theoretical basis for object-oriented type systems [1, 6].

On the other hand, it is well known that logical formulae with such unrestricted self-references would introduce
a contradiction (variant of Russell’s paradox). Therefore, logical systems must have certain restrictions on the forms
of self-references (if ever allowed) in order to keep themselves sound; for example, µ-calculus [25, 20] does not
allow negative self-references (see also [13]).

Through the formulae-as-types notion, this paradox corresponds to the fact that every type of λµ is inhabited
by a diverging program which does not produce any information; for example, the λ-term (λx. xx)(λx. xx) can be
typed with every type in λµ. Therefore, even with the model mentioned above, types can be regarded only as partial
specifications of programs, and that is considered the reason why we lost the compositionality of programs in the
Nat(n) case, where we regarded convergence of programs as a part of their specifications. This shows a contrast with
the success of λµ as a basis for type systems of object-oriented program languages, where the primary purpose of
types, i.e., coarse specifications, is to prevent run-time type errors, and termination of programs is out of the scope.

The logical inconsistency of λµ also implies that no mater how much types, or specifications, are refined, con-
vergence of programs can not be expressed by them, and must be handled by endowing the typing system with some
facilities for discussing computational properties of programs. For example, Constable et al. adopted this approach
in their pioneering works to incorporate recursive definitions and partial objects into constructive type theory [10,
11]. However, in this paper, we will pursue another approach such that types themselves can express convergence of
programs.

Towards the approximation modality. Suppose that we have a recursive program f defined by:

f ≡ F (f),

and want to show that f satisfies a certain specification S. Since the denotational meaning of f is given as the least
fixed point of F , i.e., f = supn<ω Fn(⊥), a possible way to do that would be to apply Scott’s fixed point induction
[26] by showing that:

– ⊥ satisfies S,
– F (x) satisfies S provided that x satisfies S, and
– S is chain closed.

2

However, this does not suffice for our purpose if S includes some requirement about the convergence of f , because
obviously⊥, or even Fn(⊥), could not satisfy the requirement. So we need more refined approach. The failure of the
naive fixed point induction above suggests that the specification to be satisfied by each Fn(⊥) inherently depends
on n, and the requirement concerning its convergence must become stronger when n increases. This leads us to a
layered version of the fixed-point induction scheme as follows: in order to show that f satisfies S, it suffices to find
an infinite sequence S0, S1, S2, . . . of properties, or (virtual) specifications, such that:

(1) S =
⋂

n<ω Sn,
(2) Sn+1 ⊂ Sn,
(3) ⊥ satisfies S0,
(4) F (x) satisfies Sn+1 provided that x satisfies Sn, and
(5) Sn is chain closed.

For, since Fn(⊥) ∈ Sn for every n by (3) and (4), we get F k(⊥) ∈ Sn for every k ≥ n by (2). This and (5) imply
f ∈ Sn for every n, and consequently f ∈ S by (1).

In this scheme, the sequence S0, S1, S2, . . . can be regarded as a successive approximation of S, and F a (higher-
order) program which constructs a program that satisfies Sn+1 from one that satisfies Sn. It should be also noted that
F works independently of n. This uniformity of F over n leads us to consider a formalization of this scheme in a
modal logic, where the set of possible worlds (in the sense of Kripke semantics) consists of all non-negative integers,
and Sn in the induction scheme above corresponds to the interpretation of S in the world n. We now write x rk S
to denote the fact that x satisfies the interpretation of S in the world k, and define a modality, say •, as:

x rk •S iff k = 0 or x rk−1 S.

The condition (2) of the induction scheme says that x rk S implies x rl S for every l ≤ k; in other words, the
interpretation of specifications should be hereditary with respect to the accessibility relation >. In such a modal
framework, the specification to be satisfied by F can be represented by •S → S provided that the →-connective is
interpreted in the standard way in each world, and our induction scheme can be rewritten as:

if ⊥ r0 S and F rk •S → S for every k > 0, then f rk S for every k.

Furthermore, if we assume that S0 is a trivial specification which is satisfiable by any program, then, shifting the
possible worlds downwards by one, we can simplify this to:

(∗) if F rk •S → S for every k, then f rk S for every k.

Although this assumption about S0 somewhat restricts our choice of the sequence S0, S1, S2, . . ., it could be thought
rather reasonable because, at any rate, S0 must be an almost trivial specification that is even satisfiable by ⊥. Note
that Sn+1 occurring in the induction now corresponds to the interpretation of S in the world n, and S0 corresponds
to the interpretation of •S in the world 0.

From this interpretation, we can extract some fundamental properties concerning the •-modality, which introduce
a subsumption, or subtyping, relation over specifications into our modal framework. First, the hereditary interpreta-
tion of specifications implies the following property:

– x rk S implies x rk •S.

Second, this and the standard interpretations of → imply the following two properties:

– x rk S → T implies x rk •S →•T , and
– x rk •S →•T implies x rk •(S → T).

Furthermore, if x rk > → > for every x and k, where > is the trivial specification which is satisfiable by any
program, i.e., the universe of (meanings of) programs, then the converse of the second one is also true, that is:

– x rk •(S → T) implies x rk •S →•T .

Note that this is not always the case because we could consider non-extensional interpretations, e.g., F-semantics
[15], in which λx.⊥ rk >→> holds, but ⊥ rk >→> does not.

3

Specification-level self-references. This modal framework introduced for program-level self-references also provides
a basis for specification-level self-references. Suppose that we have a self-referential specification such as:

S = φ(S).

As we saw in the Nat(n) case, negative reference to S in φ can introduce a contradiction in the conventional setting,
and this is still true in our modal framework. However, in the world n, we can now refer to the interpretation of S in
any world k < n without worrying about the contradiction. That is, as long as S occurs only in scopes of the modal
operator • in φ, the interpretation of S is well-defined and given as a fixed point of φ, which is actually shown to be
unique. For example, if S is defined as S = •S → T , then S could be interpreted in each world as follows:

S0 = >→ T0

S1 = S0 ∩ ((>→ T0)→ T1)
S2 = S1 ∩ ((S0 ∩ ((>→ T0)→ T1))→ T2)

...
Sn+1 = Sn ∩ (Sn → Tn+1)

...

where Sk and Tk are the interpretations of S and T in the world k, respectively, and the notations such as > and →
are abused to denote their expected interpretations also. Note that this kind of self-references provides us a method
to define the sequence S0, S1, S2, . . . for the refined induction scheme when we derive properties of recursive
programs, and the induction scheme would be useless if we did not have such a method.

In the following sections, we will see that this form of specification-level self-references is quite powerful, and
captures a wide range of specifications including those which are not representable in the conventional setting such
as ones for add and add′ in the Nat(n) case. Furthermore, the modal version (∗) of the induction scheme turns out
to be derivable from other properties of the •-modality and such self-referential specifications, where the derivation
corresponds to fixed point combinators, such as Curry’s Y. This also gives us a way to construct recursive programs
based on the proofs-as-programs notion.

2 Untyped λ-calculus

We begin with the definition of the standard untyped λ-calculus with individual constants.

Definition 2.1 (Untyped λ-terms). The syntax of the λ-terms is defined relatively to the following two disjoint sets:
Const of individual constants (c, d, . . .) and Var of countably infinite individual variables (f, g, h, x, y, z, . . .). The
set Exp of λ-terms is defined by the following BNF notation:

Exp ::= Const (individual constants)
| Var (individual variables)
| λVar. Exp (λ-abstractions)
| ExpExp (applications).

We use M, N, K,L, . . . to denote λ-terms. Free and bound occurrences of individual variables and the notion of
α-convertibility are defined in the standard manner. Hereafter, we identify λ-terms by this α-convertibility. We
denote the set of individual variables occurring freely in M by FV (M), and use M [N1/x1, . . . , Nn/xn] to denote
the λ-term obtained from a λ-term M by substituting N1, . . . , Nn for each free occurrence of individual variables
x1, . . . , xn, respectively, with necessary α-conversion to avoid accidental capture of free variables.

Definition 2.2 (β-reduction). The standard notion of β-reduction, a binary relation →
β

over Exp, is defined as
follows:

C[(λx. M)N] →
β
C[M [N/x]],

where C is an arbitrary context of λ-term.

We denote the transitive and reflexive closure of →
β

by ∗→
β

, and the symmetric closure of →
β

by ↔
β

. We define the
equivalence relation =

β
as the transitive and reflexive closure of ↔

β
.

4

Definition 2.3. Let ρ be a mapping from a set T to a set S, and let x ∈ T and v ∈ S. We define a mapping ρ[v/x]
by:

ρ[v/x](y) =
{

v (y = x)
ρ(y) (y /= x)

Our intended semantics for untyped λ-terms is summarized as the following, where we do not require extensionality
with respect to their interpretations.

Definition 2.4 (β-model). A β-model of Exp is a tuple <V, ·, σ, [[]]V> such that:

1. V : a non-empty set.
2. σ : Const→V .
3. − · − : V × V → V .
4. [[−]]V− : Exp→ (Var→V)→V .
5. [[x]]Vρ = ρ(x).
6. [[c]]Vρ = σ(c).
7. [[MN]]Vρ = [[M]]Vρ · [[N]]Vρ .

8. [[λx. M]]Vρ · v = [[M]]Vρ[v/x].

9. If M =
β

N , then [[M]]Vρ = [[N]]Vρ .

3 A brief review of λµ

In this section, we give a brief review of the typing system λµ, which is a simply typed lambda calculus with
recursive types.

Definition 3.1 (Type expressions of λµ). The syntax of the type expressions of λµ is defined relatively to the fol-
lowing two sets: TConst of type constants (P,Q, R, . . .) and TVar of countably infinite type variables (X,Y, Z, . . .).
The set TExpλµ of type expressions of λµ is defined as follows:

TExpλµ ::= TConst (type constants)
| TVar (type variables)
| TExpλµ → TExpλµ (function types)
| µTVar. TExpλµ (recursive types).

We use A, B,C, D, . . . to denote type expressions of λµ. We regard a type variable X as bound in µX.A. We use
A[B1/X1, . . . , Bn/Xn] to denote the type expression obtained from A by substituting B1, . . . , Bn for each free
occurrence of X1, . . . , Xn, respectively. We denote the set of type variables occurring freely in A by FTV (A). We
regard α-convertible type expressions as identical; for example, µX.X → Y = µZ.Z → Y . We use µX.A to denote
a type expression of the form µX1.µX2. . . . µXn.A, where n is a non-negative integer.

Definition 3.2. A type expression A of λµ is λµ-proper1 in X if and only if X occurs freely only in scopes of the
→-operator in A. That is,

1. A type constant P is always λµ-proper in X .
2. A type variable Y is λµ-proper in X if and only if Y /= X .
3. A→B is always λµ-proper in X .
4. µY.A is λµ-proper in X if and only if so is A or Y = X .

Note that A is λµ-proper in X if and only if for every Y , A /= µY.X .

Definition 3.3. We define the equivalence relation 'λµ over TExpλµ as the smallest binary relation that satisfies:

('λµ-reflex) A 'λµ A.
('λµ-symm) If A 'λµ B, then B 'λµ A.
('λµ-trans) If A 'λµ B and B 'λµ C, then A 'λµ C.

1 Many authors say contractive.

5

('λµ-→) If A 'λµ C and B 'λµ D, then A→B 'λµ C →D.
('λµ-fix) µX.A 'λµ A[µX.A/X].

('λµ-uniq) If A 'λµ C[A/X] and C is λµ-proper in X , then A 'λµ µX.C.

Intuitively, two type expressions of λµ are equivalent modulo 'λµ, if they have the same (possibly infinite) type
expression obtained by unfolding recursive types µX.A occurring in them to A[µX.A/X] indefinitely. This equiva-
lence relation is known to be decidable (see [8] and [3]).

Proposition 3.4. Let n be a non-negative integer, X1, X2, . . ., Xn type variables, and A, B1, B2, . . ., Bn, C1,
C2, . . ., Cn type expressions of λµ. If Bi 'λµ Ci for every i (i = 1, 2, . . . , n), then A[B1/X1, B2/X2, . . . ,
Bn/Xn] 'λµ A[B1/X1, B2/X2, . . . , Bn/Xn].

Proof. By induction on the structure of A, and by cases of the form of A. The only interesting case is when A =
µY.A′ for some Y and A′. We can assume that Y /∈ {Xi} ∪ FTV (Bi) ∪ FTV (Ci) for every i. In the sequel,
we use abbreviations [B/X] and [C/X] for [B1/X1, B2/X2, . . . , Bn/Xn] and [C1/X1, C2/X2, . . . , Cn/Xn],
respectively. By the induction hypothesis, we have

µY.A′[B/X] 'λµ A′[B/X][µY.A′[B/X]/Y] (by ('λµ-fix))
= A′[B/X, µY.A′[B/X]/Y] (since Y /∈ FTV (B))
'λµ A′[C/X, µY.A′[B/X]/Y] (by the ind. hyp.)
= A′[C/X][µY.A′[B/X]/Y] (since Y /∈ FTV (C))

Since A′[C/X] is also λµ-proper in Y , we now get µY.A′[B/X] 'λµ µY.A′[C/X] by ('λµ-uniq); and therefore,
A[B/X] 'λµ A[C/X]. ut
Proposition 3.5. Let n be a non-negative integer, X1, X2, . . ., Xn type variables, and A, B, C1, C2, . . ., Cn, D1,
D2, . . ., Dn, type expressions of λµ. If A 'λµ B and Ci 'λµ Di for every i (i = 1, 2, . . . , n), then A[C1/X1,
C2/X2, . . . , Cn/Xn] 'λµ B[D1/X1, D2/X2, . . . , Dn/Xn].

Proof. By induction on the derivation of A 'λµ B, and by cases of the last rules applied in the derivation. Use
Proposition 3.4 in case of ('λµ-reflex). If the last rule is ('λµ-fix), then A = µY.A′ and B = A′[µY.A′/Y] for
some Y and A′. We can assume that Y /∈ {Xi} ∪ FTV (Ci) ∪ FTV (Di) for every i.

µY.A′[C/X] 'λµ A′[C/X][µY.A′[C/X]/Y] (by ('λµ-fix))
'λµ A′[C/X, µY.A′[C/X]/Y] (since Y /∈ FTV (C))
'λµ A′[D/X, µY.A′[C/X]/Y] (by Proposition 3.4)
'λµ A′[D/X][µY.A′[C/X]/Y] (since Y /∈ FTV (D))

Since A′[D/X] is also λµ-proper in Y , we now get µY.A′[C/X] 'λµ µY.A′[D/X] by ('λµ-uniq); and there-
fore,

A[B/X] = µY.A′[C/X]
'λµ µY.A′[D/X]
'λµ A′[D/X][µY.A′[D/X]/Y] (by ('λµ-fix))
= A′[D/X, µY.A′[D/X]/Y] (since Y /∈ FTV (D))
= A′[µY.A′/Y][D/X]
= B[D/X].

If the last rule is ('λµ-uniq), then B = µY.B′ for some Y and B′ such that A 'λµ B′[A/Y] and B′ is λµ-proper
in Y . We can assume that Y /∈ {Xi} ∪ FTV (Ci) ∪ FTV (Di) for every i.

A[C/X] 'λµ B′[A/Y][D/X] (by the ind. hyp.)
= B′[D/X, A[D/X]/Y]
= B′[D/X][A[D/X]/Y] (since Y /∈ FTV (D))
'λµ B′[D/X][A[C/X]/Y] (by Proposition 3.4)

Since B′[D/X] is also λµ-proper in Y , we now get A[C/X] 'λµ µY.B′[D/X] by ('λµ-uniq); and therefore,
A[C/X] 'λµ B[D/X]. ut

6

Proposition 3.6. Suppose that A and B are both λµ-proper in X . If A ' B, then µX.A ' µX.B.

Proof. We get µX.A 'λµ A[µX.A/X] 'λµ B[µX.A/X] by ('λµ-fix) and Proposition 3.5. Therefore, since B is
λµ-proper in X , we get µX.A 'λµ µX.B by ('λµ-uniq). ut
Definition 3.7 (Typing contexts). A typing context, or a context for short, of λµ is a finite mapping that assigns a
type expression of λµ to each individual variable of its domain. We use Γ , Γ ′, . . . to denote contexts, and {x1 :
A1, . . . , xm : Am} to denote a context whose domain is {x1, . . . , xm} and that assigns Ai to xi for every i, where
A1, . . . , Am are type expressions of λµ, and x1, . . . , xm are distinct individual variables.

Definition 3.8 (λµ). Let τ be a mapping that assigns a type constant τ(c) to each individual constant c. The typing
system λµ is defined relatively to this τ by the following derivation rules:

Γ ∪ {x : A} `λµ x : A
(var)

Γ `λµ c : τ(c)
(const)

Γ `λµ M : A

Γ `λµ M : A′
('λµ) (A 'λµ A′)

Γ ∪ {x : A} `λµ M : B

Γ `λµ λx. M : A→B
(→ Iλµ)

Γ1 `λµ M : A→B Γ2 `λµ N : A

Γ1 ∪ Γ2 `λµ MN : B
(→Eλµ)

Definition 3.9 (Realizability models of λµ). A realizability model of λµ is a tuple <V, ·, σ, [[]]V, T , δ, [[]]T >
such that:

1. <V, ·, σ, [[]]V> is a β-model of Exp.
2. T ⊂ P(V) (= { S | S ⊂ V })
3. δ : TConst→T
4. σ(c) ∈ δ(τ(c))
5. [[−]]T− : TExpλµ → (TVar→T)→T
6. [[X]]Tη = η(X)
7. [[P]]Tη = δ(P)
8. [[A→B]]Tη = { v | v · u ∈ [[B]]Tη for every u ∈ [[A]]Tη }
9. If A 'λµ B, then [[A]]Tη = [[B]]Tη .

It is not straightforward to construct a non-trivial realizability model of λµ. The first non-trivial model was developed
by MacQueen, Plotkin and Sethi [22], by constructing a complete metric space of types and by interpreting recursive
types as the fixed points of contractive type constructors (see also [2, 8]).

Proposition 3.10 (Soundness of λµ). Let <V, ·, σ, [[]]V, T , δ, [[]]T > be a realizability model of λµ. If {x1 :
A1, . . . , xn : An} `λµ M : B is derivable, then [[M]]Vρ ∈ [[B]]Tη for every η and ρ provided ρ(xi) ∈ [[Ai]]

T
η

(i = 1, 2, . . . , n).

Proof. By induction on the derivation and by cases of the last rule used in the derivation. ut
Nevertheless, as mentioned in Introduction, unrestricted self-references allowed in λµ cause a logical contradic-

tion as follows (Curry’s paradox):

Proposition 3.11. `λµ (λx. xx) (λx. xx) : A is derivable for any type expression A.

Proof. Let C = µX.X →A, and Π as follows:

Π =

x : C `λµ x : C

x :C `λµ x : C→A
('λµ)

x : C `λµ x : C

x : C `λµ xx : A
(→E)

`λµ λx.xx : C→A
(→I)

Then, we can derive it as follows:

... Π
`λµ λx.xx : C→A

... Π
`λµ λx.xx : C→A

`λµ λx.xx : C
('λµ)

`λµ (λx.xx) (λx.xx) : A
(→E)

ut

7

4 The typing system λ•µ

We now define a modal typing system, which is denoted by λ•µ, based on the idea discussed in Introduction. First,
as a preparation for introducing the syntax of type expressions, we give the one of pseudo type expressions, which
are obtained by adding a unary type constructor • to the one of TExpλµ.

Definition 4.1. We define the set PTExp of pseudo type expressions as follows:

PTExp ::= TConst (type constants)
| TVar (type variables)
| PTExp→ PTExp (function types)
| •PTExp (approximative types)
| µTVar.PTExp (recursive types).

We assume that → associates to the right as usual, and each (pseudo) type constructor associates according to the
following priority:

(Low) µX. < → < • (High).

For example, •µX.•X → Y → Z is the same as •(µX.((•X)→ (Y → Z))). We use > as an abbreviation for
µX.•X and use •nA to denote a (pseudo) type expression • . . . •︸ ︷︷ ︸

n times

A, where n ≥ 0.

Definition 4.2 (>-variants). A type expression A is a>-variant if and only if A = •m0µX1.•m1µX2.•m2 . . . µXn.
•mnXi for some n, m0, m1, m2, . . ., mn, X1, X2, . . ., Xn and i such that 1 ≤ i ≤ n and mi + mi+1 + mi+2 +
. . . + mn ≥ 1.

Definition 4.3 (Properness). A pseudo type expression A is proper in X if and only if X occurs freely only (a) in
scopes of the •-operator in A, or (b) in a subexpression B → C of A with C being a >-variant. In other words:

1. A type constant P is always proper in X .
2. A type variable Y is proper in X if and only if Y /= X .
3. •A is always proper in X .
4. A→B is proper in X if and only if (a) so are both A and B, or (b) B is a >-variant.
5. µY.A is proper in X if and only if so is A or Y = X .

For example, P , •X , •(X → Y), X → •µY.•Y and µY.•(X → Y) are proper in X , and neither X , X → Y nor
µY.µZ.X → Y is proper in X .

Definition 4.4 (Type expressions of λ•µ). We define the set TExp of type expressions as the smallest set of pseudo
type expressions that satisfies:

1. P ∈ TExp for every type constant P .
2. X ∈ TExp for every type variable X .
3. If A ∈ TExp and B ∈ TExp, then A→B ∈ TExp.
4. If A ∈ TExp, then •A ∈ TExp.
5. If A ∈ TExp and A is proper in X , then µX.A ∈ TExp.

In other words, a type expression is a pseudo type expression such that A is proper in X for any of its subexpressions
in the form of µX.A. We denote the set of type expressions of λ•µ by TExp.

For example, P , X , X → Y , µX.•X → Y , µX.X → > and µX.•µY.X → Z are type expressions of λ•µ, and
neither µX.X → Y nor µX.µY.X → Y is a type expression of λ•µ. We also use A,B, C,D, . . . to denote type
expressions of λ•µ, and define other notations such as FTV (A) and A[B1/X1, . . . , Bn/Xn] similarly to the case
of λµ.

Definition 4.5. Let A be a type expression. We define h(A), the height of A, and r(A), the rank of A, as follows:

h(P) = h(X) = 0
h(•A) = h(A) + 1
h(A→B) = max(h(A), h(B)) + 1
h(µX.A) = h(A) + 1

r(P) = r(X) = r(•A) = 0

r(A→B) =
{

0 (B is a >-variant)
max(r(A), r(B)) + 1 (otherwise)

r(µX.A) = r(A) + 1

8

Proposition 4.6. If A is proper in X , then r(A[B/X]) < r(µX.A) for every B.

Proof. By straightforward induction on h(A), and by cases on the form of A. ut
Proposition 4.7. 1. If A and B are proper in X , then so is A[B/Y].

2. If A is proper in X , then so is A[B/X] for every B.

Proof. By straightforward induction on h(A), and by cases on the form of A. ut
Definition 4.8. Let be A be a type expression. We define sets ETV +(A) and ETV −(A) of type variables as fol-
lows:

ETV ±(P) = {}
ETV +(X) = {X}
ETV −(X) = {}

ETV ±(•A) = ETV ±(A)

ETV ±(A→B) =
{{} (B is a >-variant)

ETV ∓(A) ∪ ETV ±(B) (otherwise)

ETV ±(µX.A) =
{

(ETV ±(A) ∪ ETV ∓(A))− {X} (X ∈ ETV −(A))
ETV ±(A)− {X} (X /∈ ETV −(A))

The set ETV +(A) (ETV −(A)) consists of the type variables that have free positive (negative) occurrences in A,
where we ignore any subexpression B → C of A whenever C is a >-variant. Note that ETV ±(A) ⊂ FTV (A).

Proposition 4.9. 1. If A is a >-variant, then so is A[B/X].
2. If A[B/X] is a >-variant, then (a) A is also a >-variant, or (b) X ∈ ETV +(A) and B is a >-variant.

Proof. By straightforward induction on h(A), and by cases on the form of A. ut
Proposition 4.10. 1. If X ∈ ETV ±(A), X /= Y and B is not a >-variant, then X ∈ ETV ±(A[B/Y]).

2. If X /∈ ETV ±(A) and X /∈ ETV +(B) ∪ ETV −(B), then X /∈ ETV ±(A[B/Y]).

Proof. By straightforward induction on h(A), and by cases of the form of A. Use Proposition 4.9.2 for part 1 in case
that A = C →D for some C and D. Note that X ∈ ETV ±(C →D) implies that D is not a >-variant. ut
Proposition 4.11. 1. If X ∈ ETV +(A) and Y ∈ ETV ±(B), then Y ∈ ETV ±(A[B/X]).

2. If X ∈ ETV −(A) and Y ∈ ETV ±(B), then Y ∈ ETV ∓(A[B/X]).
3. If X /∈ ETV +(A) and Y /∈ ETV ±(A) ∪ ETV ∓(B), then Y /∈ ETV ±(A[B/X]).
4. If X /∈ ETV −(A) and Y /∈ ETV ±(A) ∪ ETV ±(B), then Y /∈ ETV ±(A[B/X]).

Proof. By simultaneous induction on h(A). ut
Definition 4.12. Let X be a type variable, and A a type expression. The positive •-depth dp+

• (A, X), the negative
•-depth dp−• (A, X), the positive→-depth dp+

→(A, X) and the negative→-depth dp−→(A, X) of X in A are defined
as follows:

dp±• (P, X) = ∞
dp+
• (Y, X) =

{
0 (X = Y)
∞ (X /= Y)

dp−• (Y, X) = ∞
dp±• (•A, X) = dp±• (A, X) + 1

dp±• (A→B, X) =
{∞ (B is a >-variant)

min(dp∓• (A, X), dp±• (B, X)) (otherwise)

dp±• (µY.A, X) = min(dp±• (A, X), dp−• (A, Y) + dp∓• (A, X)) (X /= Y)

dp±→(P, X) = ∞
dp+
→(Y, X) =

{
0 (X = Y)
∞ (X /= Y)

9

dp−→(Y, X) = ∞
dp±→(•A, X) = dp±→(A, X)

dp±→(A→B, X) =
{∞ (B is a >-variant)

min(dp∓→(A, X), dp±→(B, X)) + 1 (otherwise)

dp±→(µY.A, X) = min(dp±→(A, X), dp−→(A, Y) + dp∓→(A, X)) (X /= Y)

Note that dp±• (A, X), dp±→(A, X) ∈ {0, 1, 2, . . . , ∞}. We can easily check that α-conversions do not affect the
definition of dp±• (A, X) or dp±→(A, X). We also define the •-depth dp•(A, X) and →-depth dp→(A, X) of X in
A as follows:

dp•(A, X) = min(dp+
• (A, X), dp−• (A, X))

dp→(A, X) = min(dp+
→(A, X), dp−→(A, X))

Proposition 4.13. Let dp be dp• or dp→.

1. dp±(A, X) < ∞ if and only if X ∈ ETV ±(A).
2. dp±(A[B/X], X) = min(dp+(A, X) + dp±(B, X), dp−(A, X) + dp∓(B, X)).
3. If X /= Y , then dp±(A[B/X], Y) = min(dp±(A, Y), dp+(A, X)+dp±(B, Y), dp−(A, X)+dp∓(B, Y)).

Proof. By induction on h(A), and by cases of the form of A. ut
Proposition 4.14. A is proper in X if and only if dp•(A, X) > 0.

Proof. By straightforward induction on h(A), and by cases of the form of A. ut
Proposition 4.15. 1. If dp+

→(A,X) = 0, then ETV +(A) = {X} and ETV −(A) = {}.
2. dp−→(A,X) > 0.

Proof. By straightforward simultaneous induction on h(A), and by cases of the form of A. ut

5 Equality of types

Definition 5.1 ('). The equivalence relation ' over TExp is defined as the smallest binary relation that satisfies:

('-reflex) A ' A.
('-symm) If A ' B, then B ' A.
('-trans) If A ' B and B ' C, then A ' C.

('-•) If A ' B, then •A ' •B.
('-→) If A ' C and B ' D, then A→B ' C →D.

('-→>) A→> ' B →>.
('-fix) µX.A ' A[µX.A/X].

('-uniq) If A ' C[A/X] and C is proper in X , then A ' µX.C.

Note that except for ('-•), ('-→>) and ('-uniq), these conditions are the same as 'λµ. Two type expressions of
λ•µ are equivalent modulo ', if their (possibly infinite) type expression obtained by indefinite unfolding recursive
types occurring in them are identical modulo the rule ('-→>).

Proposition 5.2. Let n be a non-negative integer, X1, X2, . . ., Xn type variables, and A, B1, B2, . . ., Bn, C1, C2,
. . ., Cn type expressions of λµ. If Bi ' Ci for every i (i = 1, 2, . . . , n), then A[B1/X1, B2/X2, . . . , Bn/Xn] '
A[B1/X1, B2/X2, . . . , Bn/Xn].

Proof. Similar to the proof of Proposition 3.4. Use Proposition 4.7.2 for the case that A = µY.A′ for some Y and
A′. ut
Proposition 5.3. Let n be a non-negative integer, X1, X2, . . ., Xn type variables, and A, B, C1, C2, . . ., Cn, D1,
D2, . . ., Dn, type expressions of λµ. If A ' B and Ci ' Di for every i (i = 1, 2, . . . , n), then A[C1/X1, C2/X2,
. . . , Cn/Xn] ' B[D1/X1, D2/X2, . . . , Dn/Xn].

10

Proof. Similar to the proof of Proposition 3.5. Use Proposition 4.7.2 for the case that the last rule is ('-fix) or
('-uniq) ut

In the sequel, we use Proposition 5.3 in proofs without notice.

Proposition 5.4. If A ' B, then dp±• (A, X) = dp±• (B, X) and dp±→(A, X) = dp±→(B, X).

Proof. By induction on the derivation of A ' B. The only interesting case is when the last rule is ('-uniq). Suppose
that A ' B. There exist some Y and C such that B = µY.C, A ' C[A/Y] and C is proper in Y . By the induction
hypothesis,

dp±• (A, Z) = dp±• (C[A/Y], Z) and dp±→(A, Z) = dp±→(C[A/Y], Z) for every Z. (1)

Therefore, dp±• (A, Y) = dp±• (C[A/Y], Y) = min(dp+
• (C, Y) + dp±• (A, Y), dp−• (C, Y) + dp∓• (A, Y)) by

Proposition 4.13.2. Since dp±• (C, Y) > 0 by Proposition 4.14, we get dp±• (A, Y) = ∞; and therefore, also
dp±→(A, Y) = ∞ by Propositions 4.13.1. If X = Y , then dp±• (µY.C, X) = ∞ = dp±• (A, X) and dp±→(µY.
C, X) = ∞ = dp±→(A, X) by Propositions 4.13.1. Otherwise, i.e., if X /= Y , then

dp±• (A, X) = dp±• (C[A/Y], X) (by (1))
= min(dp±• (C, X), dp+

• (C, Y) + dp±• (A, X), dp−• (C, Y) + dp∓• (A, X)))
(by Proposition 4.13.3)

= min(dp±• (C, X), dp−• (C, Y) + dp∓• (A, X)) (since dp+
• (C, Y) > 0)

= min(dp±• (C, X), dp−• (C, Y) + min(dp∓• (C, X), dp−• (C, Y) + dp±• (A, X)))
= min(dp±• (C, X), dp−• (C, Y) + dp∓• (C, X), dp−• (C, Y) + dp−• (C, Y) + dp±• (A, X))
= min(dp±• (C, X), dp−• (C, Y) + dp∓• (C, X)) (since dp−• (C, Y) > 0)
= dp±• (µY.C, X) (by Definition 4.12)

Similarly, we get dp±→(A, X) = min(dp±→(C, X), dp+
→(C, Y) + dp±→(A, X), dp−→(C, Y) + dp∓→(A, X)) in this

case. If dp±→(C, Y) > 0, then dp±→(A, X) = dp±→(µY.C, X) as in the case of dp±• . Otherwise, i.e., if dp+
→(C,

Y) = 0, then X /∈ FTV (µY.C) by Propositions 4.15; and therefore X /∈ FTV (A) by Propositions 4.13.1,
because we already have dp±• (A, X) = dp±• (µY.C, X). We now get dp±→(A, X) = ∞ = dp±→(µY.C, X) by
Propositions 4.13.1 again. ut

Proposition 5.5. Suppose that A ' B.

1. ETV ±(A) = ETV ±(B).
2. A is proper in X if and only if so is B.

Proof. Obvious from Propositions 4.13.1, 4.14 and 5.4. ut

Definition 5.6. Let n be a non-negative integer, and X1, X2, . . ., Xn be type variables. Let A and B be type
expressions. We define a type expression A[B/X1, X2 . . . Xn] by A[B/X ′

1, B/X ′
2 . . . B/X ′

m], where X ′
1, X ′

2

. . . X ′
m are distinct type variables such that {X ′

1, X ′
2 . . . X ′

m} = {X1, X2 . . . Xn}. We use A[B/X] to denote a
type expression of the form A[B/X1, X2 . . . Xn].

Proposition 5.7. µX.A ' A[µX.A/X]

Proof. By induction on the length of X . Let X = X1, X′.

µX.A ' (µX′.A)[µX.A/X1] (by ('-fix))
' A[µX′.A/X′][µX.A/X1] (by ind. hyp.)
= A[µX.A/X1][(µX′.A)[µX.A/X1]/X′]
' A[µX.A/X1][µX.A/X′] (by ('-fix))
= A[µX.A/X1, X′]
= A[µX.A/X] ut

11

Proposition 5.8. 1. If A ' B and A or B is proper in X , then µX.A ' µX.B.
2. If A ' C[A/X], B ' C[B/X], and C is proper in X , then A ' B.
3. µX.A[X/Y] ' µX.A[A[X/Y]/Y].
4. µX.A[X/Y] ' µX.µY.A.

Proof. For the part 1, we get µX.A ' A[µX.A/X] ' B[µX.A/X] by ('-fix) and Proposition 5.3. Note that if
A is proper in X , then so is B by Proposition 5.5 since A ' B. Therefore, µX.A ' µX.B by ('-uniq). The part
2 is obvious by ('-uniq), ('-symm) and ('-trans). For the part 3, let C = A[A[X/Y]/Y] and show that µX.
A[X/Y] ' C[µX.A[X/Y]/X] and µX.A[A[X/Y]/Y] ' C[µX.A[A[X/Y]/Y]/X]. Note that A[A[X/Y]/Y] is
proper in X by Proposition 4.7. For the part 4, let C = A[X/Y] and show that µX.A[X/Y] ' C[µX.A[X/Y]/X]
and µX.µY.A ' C[µX.µY.A/X]. Use Proposition 5.7.

Proposition 5.9. 1. > ' •>.
2. > ' µX.•nX for every n ≥ 1.

Proof. Obvious from ('-fix) and ('-uniq). ut
Proposition 5.10. µZ.A→B ' C if and only if C = µZ′.A′→B′ for some Z′, A′ and B′ such that:

B[µZ.A→B/Z] ' B′[µZ′.A′→B′/Z′], and (2)
A[µZ.A→B/Z] ' A′[µZ′.A′→B′/Z′] or B[µZ.A→B/Z] ' > (3)

Proof. First, we show the “if” part. Suppose that there exist some Z′, A′ and B′ such that C = µZ′.A′→ B′, and
both (2) and (3) hold.

µZ.A→B ' (A→B)[µZ.A→B/Z] (by Proposition 5.7)
= A[µZ.A→B/Z]→B[µZ′.A→B/Z′]
' A′[µZ′.A′→B′/Z′]→B′[µZ′.A′→B′/Z′] (by (2), (3) and ('-→))
= (A′→B′)[µZ′.A′→B′/Z′]
' µZ′.A′→B′ (by Proposition 5.7)
= C

As for the “only if” part, we prove a more general statement: if µZ.A → B ' C or C ' µZ.A → B, then
C = µZ′.A′ → B′ for some Z′, A′ and B′ such that (2) and (3) hold. The proof proceeds by induction on the
derivation of µZ.A→B ' C or C ' µZ.A→B, and by cases of the last rule used in the derivation.

Case: ('-µ). Let Z = X, Y . Since µX.µY.A→B ' C or C ' µX.µY.A→B is derivable, so is µY.A→B ' C ′

or C ′ ' µY.A→ B for some C ′ such that C = µX.C ′. By the induction hypothesis, C ′ = µY ′.A′→ B′ for some
A′ and B′ such that:

B[µY.A→B/Y] ' B′[µY ′.A′→B′/Y ′], and (4)
A[µY.A→B/Y] ' A′[µY ′.A′→B′/Y ′] or B[µY.A→B/Y] ' > (5)

We can assume that X /∈ {Y , Y ′} without loss of generality.

B[µX.µY.A → B/X, Y] = B[µX.µY.A → B/Y][µX.µY.A → B/X]
' B[(µY.A→B)[µX.µY.A→B/X]/Y][µX.µY.A→B/X] (by ('-fix))
= B[µY.A→B/Y][µX.µY.A→B/X]
' B′[µY ′.A′→B′/Y ′][µX.µY.A→B/X] (by (4))
' B′[µY ′.A′→B′/Y ′][µX.µY ′.A′→B′/X] (since µY.A→B ' C ′)
= B′[(µY ′.A′→B′)[µX.µY ′.A′→B′/X]/Y ′][µX.µY ′.A′→B′/X]
' B′[µX.µY ′.A′→B′/Y ′][µX.µY ′.A′→B′/X] (by ('-fix))
= B′[µX.µY ′.A′→B′/X, Y ′]

Similarly, we get A[µX.µY.A→B/X, Y] = A′[µX.µY ′.A′→B′/X, Y ′] or B[µX.µY.A→B/X, Y] ' > from
(5).

12

Case: ('-fix). For some X , Y , D and E, the derivation ends with µX.µY.D → E ' (µY.D → E)[µX.µY.D →
E/X]. Since we can assume that X /∈ {Y } without loss of generality, we get (µY.D→ E)[µX.µY.D→ E/X] =
µY.(D→ E)[µX.µY.D→ E/X].

E[µX.µY.D → E/X, Y] = E[µX.µY.D → E/X][µX.µY.D → E/Y]
' E[µX.µY.D→ E/X][(µY.D→ E)[µX.µY.D→ E/X]/Y] (by ('-fix))
= E[µX.µY.D→ E/X][µY.(D→ E)[µX.µY.D→ E/X]/Y]

Similarly, we get D[µX.µY.D → E/X, Y] ' D[µX.µY.D → E/X][µY.(D → E)[µX.µY.D → E/X]/Y] or
E[µX.µY.D→ E/X, Y] ' >.

Case: ('-uniq). If µZ.A→B ' C, there exists some C ′ such that C = µX.C ′, µZ.A→B ' C ′[µZ.A→B/X],
and C ′ is proper in X . In this case, by the induction hypothesis, we get C ′ = µY.A′→ B′ for some Y , A′ and B′.
On the other hand, if C ' µZ.A→ B, then we have C ' (µY.A→ B)[C/X] for some Y such that Z = X, Y .
In this case, C = µY ′.A′→ B′ for some Y ′ A′ and B′ by the induction hypothesis. Therefore, in either case, the
derivation ends with:

µZ.A→B ' (µY.A′→B′)[µZ.A→B/X]

µZ.A→B ' µX.µY.A′→B′ ('-uniq)

for some Y , D and E such that X /∈ {Y }. Let Z′ = X, Y . Then it suffices to show that (2) and (3) hold. We can
assume that X /∈ {Z} without loss of generality. By the induction hypothesis,

B[µZ.A→B/Z] ' B′[µZ.A→B/X][(µY.A′→B′)[µZ.A→B/X]/Y], and (6)
A[µZ.A→B/Z] ' A′[µZ.A→B/X][(µY.A′→B′)[µZ.A→B/X]/Y] or B[µZ.A→B/Z] ' > (7)

Therefore,

B[µZ.A→B/Z] ' B′[µZ.A→B/X][(µY.A′→B′)[µZ.A→B/X]/Y] (by (6))
= B′[µY.A′→B′/Y][µZ.A→B/X]
' B′[µY.A′→B′/Y][µX.µY.A′→B′/X]
= B′[(µY.A′→B′)[µX.µY.A′→B′/X]/Y][µX.µY.A′→B′/X]
' B′[µX.µY.A′→B′/Y][µX.µY.A′→B′/X] (by ('-fix))
= B′[µX.µY.A′→B′/X, Y]
= B′[µX.µY.A′→B′/Z′]

Similarly, we also get A[µZ.A → B/Z] ' A′[µX.µY.A′ → B′/Z′] or B[µZ.A → B/Z] ' >. Other cases are
rather straightforward. ut
Proposition 5.11. Let P be a type constant. µZ.P ' C if and only if C = µZ′.P for some Z′.

Proof. Similar to the proof of Proposition 5.10. ut
Proposition 5.12. Let X /∈ {Z}. µZ.X ' C if and only if C = µZ′.X for some Z′ such that X /∈ {Z′}.

Proof. Similar to the proof of Proposition 5.10. ut
Proposition 5.13. µZ.•A ' C if and only if C = µZ′.•A′ for some Z′ and A′ such that A[µZ.•A/Z] ' A′[µZ′.
•A′/Z′].

Proof. Similar to the proof of Proposition 5.10. ut
Proposition 5.14. 1. •A ' •B if and only if A ' B.

2. A→B ' C →D if and only if (a) B ' D ' >, or (b) A ' C and B ' D.

Proof. “If” part is obvious from ('-•) and ('-→). We get “only if” part from Propositions 5.10 and 5.13. ut
Proposition 5.15. 1. > /' •nP, •nX, •n(A→B) for any n ≥ 0.

2. •A /' P, X, B → C

13

3. P /' X, A→B
4. X /' A→B

Proof. Obvious from Propositions 5.10, 5.13, 5.11 and 5.12. ut
Proposition 5.16. If •A ' >, then A ' >.

Proof. Obvious from Proposition 5.14.1 because > ' •> by Proposition 5.9.1. ut
Proposition 5.17. If •nA ' A, then (a) A ' > or (b) n = 0.

Proof. Suppose that •nA ' A and n > 0. Since •nX is proper in X , we get A ' µX.•nX by ('-uniq). Therefore,
A ' > by Proposition 5.9.2. ut
Proposition 5.18. Suppose that A /' X and m ≥ n.

1. If A[B/X] ' •nP and B ' •mP , then A ' •nP .
2. If A[B/X] ' •nY and B ' •mY , then A ' •nY .
3. If A[B/X] ' •n(C →D) and B ' •m(C →D), then A ' •n(C ′→D′) for some C ′ and D′ such that (a)

D′[B/X] ' D ' >, or (b) C ′[B/X] ' C and D′[B/X] ' D.

Proof. By induction on the lexicographic ordering of <n, r(A)>, and by cases of the form of A. Use Proposi-
tions 5.10, 5.11, 5.12 and 5.13. The induction hypothesis is used only if A is in the form of •A′ or µZ.A′. Suppose
that A[B/X] ' •nE and B ' •mE, where E is either P , Y or C →D.

Case: A is a type constant. Since A[B/X] = A ' •nE, we get n = 0 and E = P by Proposition 5.15; and
therefore, A ' P .

Case: A is a type variable. Since A /' X , we get n = 0 and E = Y from A[B/X] ' •nE by Proposition 5.15;
and therefore, A ' Y .

Case: A = •A′ for some A′. In this case, n > 0 and A′[B/X] ' •n−1E by Propositions 5.14.1 and 5.15. If
A′ ' X , then •nE ' A[B/X] ' •B ' •m+1E; however, this is impossible by Propositions 5.14.1 and 5.15 since
m+1 > n. Therefore, A′ /' X . If E = P or E = X , then we get A′ ' •n−1E, i.e., A ' •nE by the induction
hypothesis. Similarly, if E = C →D, then we get A′ ' •n−1(C ′→D′) i.e., A ' •n(C ′→D′), for some C ′ and
D′ such that (a) D′[B/X] ' D ' >, or (b) C ′[B/X] ' C and D′[B/X] ' D.

Case: A = A1 → A2 for some A1 and A2. In this case, n = 0 and E = C → D by Proposition 5.15. Therefore,
taking C ′ and D′ as C ′ = A1 and D′ = A2, we get A ' •n(C ′ → D′); and since C → D = E = •nE '
A[B/X] = C ′[B/X]→D′[B/X], we also get (a) D′[B/X] ' D ' >, or (b) C ′[B/X] ' C and D′[B/X] ' D,
by Propositions 5.14.2.

Case: A = µZ.A′ for some Z and A′. We can assume Z /∈ FTV (B) ∪ {X}. Since A ' A′[µZ.A′/Z], we get
A′[µZ.A′] /' X and A′[µZ.A′/Z][B/X] ' (µZ.A′)[B/X] = A[B/X] ' •nE. Note also that r(A′[µZ.A′/Z]) <
r(A). Therefore, if E = P or E = X , then we get A ' A′[µZ.A′/Z] ' •nE by the induction hypothesis. Similarly,
if E = C→D, then we get A ' A′[µZ.A′/Z] ' •n(C ′→D′) for some C ′ and D′ such that (a) D′[B/X] ' D ' >,
or (b) C ′[B/X] ' C and D′[B/X] ' D. ut
Proposition 5.19. Let X1, X2, . . . , Xm be distinct type variables. If A[B1/X1, B2/X2, . . . , Bm/Xm] ' > and
Xi ∈ FTV (A) (1 ≤ i ≤ m), then A ' •nXi for some n ≥ 0.

Proof. By induction on h(A) and by cases of the form of A. Suppose that A[B1/X1, B2/X2, . . . , Bm/Xm] ' >
and Xi ∈ FTV (A) (1 ≤ i ≤ m).

Case: A = P for some P , or A = C →D for some C and D. This case is impossible because A[B/X] /' > for
any B by Proposition 5.15.1.

Case: A = Y for some Y . Trivial because we get Y = Xi from Xi ∈ FTV (A).

14

Case: A = •A′ for some A′. In this case, we can get Xi ∈ FTV (A′), and A′[B1/X1, B2/X2, . . . , Bm/Xm] '
> from •A′[B1/X1, B2/X2, . . . , Bm/Xm] = > by Proposition 5.16. Since h(A′) < h(A), by the induction
hypothesis, we get A′ ' •nXi for some n; and therefore, A = •A′ ' •n+1Xi.

Case: A = µY.A′ for some Y and A′. We can assume that Y /= Xj for any j (1 ≤ j ≤ m). From the assumption,
we get Xi ∈ FTV (A′) and

> ' A[B1/X1, B2/X2, . . . , Bm/Xm]
' A′[µY.A′/Y][B1/X1, B2/X2, . . . , Bm/Xm]
' A′[(µY.A′)[B1/X1, B2/X2, . . . , Bm/Xm]/Y, B1/X1, B2/X2, . . . , Bm/Xm].

Since h(A′) < h(A), by the induction hypothesis, we get A′ ' •nXi; and hence, A ' µY.•nXi ' •nXi. ut
Proposition 5.20. A type expression A is a >-variant if and only if A ' >.

Proof. The proof for the “only if” proceeds by straightforward induction on h(A). Note that µX.•n+1X ' > by
('-uniq) since (•n+1X)[>/X] ' >. For “if” part, it suffices to show the following:

1. If A ' >, then A is a >-variant.
2. If A ' •nX , then A is a (•nX)-variant,

where a type expression A is a (•nX)-variant if and only if A = •m0µZ1.•m1µZ2.•m2 . . . µZk.•mkX for some k,
m0, m1, m2, . . ., mk, Z1, Z2, . . ., Zk such that m0+m1+m2+ . . . +mk = n and Zi /= X for any i (1 ≤ i ≤ k).
The proof proceeds by simultaneous induction on h(A) and by cases of the form of A.

Case: A = P for some P , or A = C →D for some C and D. This case is impossible because neither A ' > nor
A ' •nX holds by Proposition 5.15.

Case: A = Y for some Y . In this case, we get A /' > by Proposition 5.15. If A ' •nX , then we get Y = X and
n = 0 also by Proposition 5.15, that is, A is a (•nX)-variant.

Case: A = •A′ for some A′. If A ' >, then A′ ' > by Proposition 5.16; and therefore, A′ is a >-variant
by the induction hypothesis. Hence, so is A. On the other hand, if A ' •nX , then n > 0 and A′ ' •n−1X
by Propositions 5.13 and 5.14.1. Therefore, A′ is a (•n−1X)-variant by the induction hypothesis, that is, A is a
(•nX)-variant.

Case: A = µY.A′ for some Y and A′. To show the first part, suppose that A ' >. If Y /∈ FTV (A′), then we get
A′ ' > since A ' A′[µY.A′/Y] = A′ in this case. Therefore, A′ is a >-variant by the induction hypothesis; and
so is A. On the other hand, if Y ∈ FTV (A′), then since A′[µY.A′/Y] ' A ' >, we get A′ ' •nY for some n by
Proposition 5.19; and hence, A′ is a (•nY)-variant by the induction hypothesis. A is thus a >-variant since we get
n > 0 from the fact that A′ is proper in Y .

For the second part, suppose that A ' •nX , that is, A′[A/Y] ' •nX . We can assume that Y /= X . Since A′ is
proper in Y , A′ /' Y . Hence, A′ ' •nX by Proposition 5.18.2; and therefore, A′ is a (•nX)-variant by the induction
hypothesis; and so is A since Y /= X . ut
In the sequel, we use Proposition 5.20 in proofs without notice.

Definition 5.21 (Canonical types). We define a set CTExp of canonical type expressions as follows:

CTExp ::= > | •nTConst | •nTVar | •n(TExp→ TExp),

where n is an arbitrary non-negative integer.

Definition 5.22. We define Ac for each type expression A as follows:

P c = P

Xc = X

(A→B)c = A→B

(•A)c =
{> (if Ac = >)
•Ac (otherwise)

(µX.A)c =
{> (if Ac = •nX for some n ≥ 1)

Ac[µX.A/X] (otherwise)

15

Proposition 5.23. Ac is a canonical type expression such that Ac ' A.

Proof. By induction on h(A), and by cases of the form of A. Note that if a canonical type expression A does not
have a form of •nX , then A[B/X] is also canonical for any B. ut
That is, Definition 5.22 can be regarded as an effective procedure for calculating a canonical type expression Ac

such that Ac ' A from a given type expression A of λ•µ.

Proposition 5.24. If A is a canonical form, then Ac = A.

Proof. By induction on h(A), and by cases of the form of A. ut

6 Subtyping induced by the modality

As mentioned in Introduction, our intended interpretation of the •-modality introduces a subtyping relation into
TExp. We now define the subtyping relation by a set of inference rules as in [3].

Definition 6.1. A subtyping assumption is a finite set of pairs of type variables such that any type variable appears
at most once in the set. We write {X1 ¹ Y1, X2 ¹ Y2, . . . , Xn ¹ Yn} to denote the subtyping assumption
{ <Xi, Yi> | i = 1, 2, . . . , n }. We use γ, γ′, γ1, γ2, . . . to denote subtyping assumptions, and FTV (γ) to denote
the set of type variables occurring in γ.

Definition 6.2 (¹). We define the derivability of subtyping judgment γ ` A ¹ B by the following derivation
rules:

γ ∪ {X ¹ Y } ` X ¹ Y
(¹-assump)

γ ` A ¹ >
(¹->)

γ ` A ¹ A′
(¹-reflex) (A ' A′)

γ1 ` A ¹ B γ2 ` B ¹ C

γ1 ∪ γ2 ` A ¹ C
(¹-trans)

γ ` A ¹ B

γ ` •A ¹ •B
(¹-•)

γ1 ` A′ ¹ A γ2 ` B ¹ B′

γ1 ∪ γ2 ` A→B ¹ A′→B′ (¹-→)

γ ` A ¹ •A
(¹-approx)

γ ` A→B ¹ •A→•B
(¹-→•)

γ ` •A→•B ¹ •(A→B)
(¹-•→)

γ ∪ {X ¹ Y } ` A ¹ B

γ ` µX.A ¹ µY.B
(¹-µ)

(
X /∈ FTV (γ) ∪ FTV (B), Y /∈ FTV (γ) ∪ FTV (A),
and A and B are proper in X and Y , respectively

)

Note that γ ∪ {X ¹ Y } and γ1 ∪ γ2 in the rules must be (valid) subtyping assumptions, i.e., any type variable must
not have more than one occurrence in them. We also define a binary relation ¹ over TExp as: A ¹ B if and only if
{} ` A ¹ B is derivable.

Most of the subtyping rules are standard. The rule (¹-µ) corresponds to the “Amber rule” [7]. The rules (¹->),
(¹-•), (¹-approx), (¹-→•) and (¹-•→) reflect our intended meaning of the •-modality discussed in Introduction.

Proposition 6.3. 1. If γ ∪ {X ¹ Y } ` A ¹ B is derivable, X ′ /= Y ′ and {X ′, Y ′} ∩ FTV (γ) = {}, then
γ ∪ {X ′ ¹ Y ′} ` A[X ′/X, Y ′/Y] ¹ B[X ′/X, Y ′/Y] is also derivable without changing the height of
derivation.

2. If γ ∪ {X ¹ Y } ` A ¹ B is derivable and C ' D, then γ ` A[C/X, D/Y] ¹ B[C/X, D/Y] is also
derivable without changing the height of derivation.

3. If γ ` A ¹ B is derivable, and γ ⊂ γ′, then γ′ ` A ¹ B is also derivable without changing the height of
derivation.

Proof. By simultaneous induction on the derivation of γ ∪ {X ¹ Y } ` A ¹ B or γ ` A ¹ B .

16

Proposition 6.4. If γ ∪ {X ¹ Y } ` A ¹ B and γ ` C ¹ D are derivable, then γ ` A[C/X, D/Y] ¹
B[C/X, D/Y] is also derivable.

Proposition 6.5. Let γ ` A ¹ B be a derivable subtyping judgment. If A ' >, then B ' >.

Proof. By induction on the height of the derivation, and by cases of the last rule applied in the derivation. Some rules
are impossible as the last one by Proposition 5.15. Use Proposition 5.16 for the case of (¹-•). Use Proposition 5.9
for the case of (¹-approx). If the last rule is (¹-µ), then the derivation ends with:

...
γ ∪ {X ¹ Y } ` A′ ¹ B′

γ ` µX.A′ ¹ µY.B′ (¹-µ)

for some X , Y , A′ and B′ such that A = µX.A′, B = µY.B′, X /∈ FTV (B′), Y /∈ FTV (A′), and A′ and B′

are proper in X and Y , respectively. By Proposition 6.3.2, we can get a derivation of γ ` A′[>/X] ¹ B′[>/Y]
from the one of γ ∪ {X ¹ Y } ` A′ ¹ B′ without changing the height of derivation. Since A ' A′[A/X] and
A ' >, we get A′[>/X] ' >. Therefore, by the induction hypothesis, B′[>/X] ' >; and then by ('-uniq),
B = µY.B′ ' >. ut
Proposition 6.6. Let γ ` A ¹ B be a derivable subtyping judgment. If A ' •A′, then B ' •B′ for some B′

such that γ ` A′ ¹ B′ is derivable.

Proof. Since A′ ' > implies B ' > ' •> by Proposition 6.5, we assume thatA′ /' >. The proof proceeds by
induction on the derivation, and by the cases of the last rule applied in the derivation. Some rules are impossible
as the last one by Proposition 5.15. Use Proposition 5.14.1 for the case of (¹-•). If the last rule is (¹-µ), then the
derivation ends with: ...

γ ∪ {X ¹ Y } ` C ¹ D

γ ` µX.C ¹ µY.D
(¹-µ)

for some X , Y , C and D such that A = µX.C, B = µY.D, X /∈ FTV (D), Y /∈ FTV (C), and C and D are
proper in X and Y , respectively. Since A′ /' >, A′ /' X and A ' C[A/X] ' •A′, by considering the canonical
form of A′, we get C ' •C ′ for some C ′ by Proposition 5.18. Therefore, by the induction hypothesis, γ ∪ {X ¹
Y } ` C ′ ¹ D′ is derivable for some D′ such that D ' •D′. We get the derivation of γ ` C ′[A/X, B/Y] ¹
D′[A/X, /B/Y] by Proposition 6.4. On the other hand, since Y /∈ FTV (C) and X /∈ FTV (B), •A′ ' A = µX.
C = µX.C[B/Y] ' µX.•C ′[B/Y] ' •C ′[B/Y][A/X] = •C ′[A/X, B/Y]. Therefore, A′ ' C ′[A/X, B/Y]
by Proposition 5.14.1. We thus get γ ` A′ ¹ D′[A/X, /B/Y] . Note that B = µY.D = µY.D[A/X] '
µY.•D′[A/X] ' •D′[A/X][B/Y] ' •D′[A/X, B/Y] since X /∈ FTV (D) and Y /∈ FTV (A). ut
Proposition 6.7. Let γ ` A ¹ B be a derivable subtyping judgment.

1. If A ' •mP and B /' >, then B ' •nP for some n such that m ≤ n.
2. If B ' •nP , then A ' •mP for some m such that m ≤ n.

Proof. By induction on the derivation of γ ` A ¹ B , and by cases of the last rule applied in the derivation. In case
of (¹-trans), use Proposition 6.5 to apply the induction hypothesis. Use Proposition 5.14.1 for the cases (¹-•) and
(¹-approx). If the last rule is (¹-µ), then the derivation ends with:

...
γ ∪ {X ¹ Y } ` A′ ¹ B′

γ ` µX.A′ ¹ µY.B′ (¹-µ)

for some X , Y , A′ and B′ such that A = µX.A′, B = µY.B′, X /∈ FTV (B′), Y /∈ FTV (A′), and A′ and B′ are
proper in X and Y , respectively. If A ' •mP , then since A ' A′[A/X] ' •mP and A′ /' X , we get A′ ' •mP
by Proposition 5.18; and therefore, by the induction hypothesis, B′ ' •nP for some n ≥ m. Similarly, if B ' •nP ,
then A′ ' •mP for some m ≤ n. ut

17

Proposition 6.8. Let γ ` A ¹ B be a derivable subtyping judgment.

1. If A ' •mX and B /' >, then B ' •nY for some n and Y such that: (a) m ≤ n, and (b) X = Y or
{X ¹ Y } ∈ γ.

2. If B ' •nY , then A ' •mX for some m and X such that: (a) m ≤ n, and (b) X = Y or {X ¹ Y } ∈ γ.

Proof. Similar to Proposition 6.7. ut

Proposition 6.9. Let γ ` A ¹ B be a derivable subtyping judgment.

1. If A ' •m(C →D) and B /' >, then there exist some n, k, l, E and F such that:
(a1) B ' •n(E → F),
(a2) m+k ≤ n, and
(a3) γ ` •kE ¹ •lC and γ ` •lD ¹ •kF are derivable.

2. If B ' •n(E → F), then there exist some m, k, l, C and D such that:
(b1) A ' •m(C →D),
(b2) m+k ≤ n,
(b3) γ ` •lD ¹ •kF is derivable, and
(b4) so is γ ` •kE ¹ •lC provided F /' >.

Note that k, l, m and n range over non-negative integers.

Proof. By induction on the derivation of γ ` A ¹ B , and by cases of the last rule used in the derivation. Propo-
sition 5.18 is crucial to the case (¹-µ). For the first part of the conjecture, suppose that A ' •m(C → D) and
B /' >.

Case: (¹-assump). This case is impossible by Proposition 5.15.

Case: (¹->). Also impossible Proposition 6.5, since B /' >.

Case: (¹-reflex). Trivial because B ' A ' •m(C →D) in this case.

Case: (¹-trans). In this case, γ ` A ¹ G and γ ` G ¹ B are derivable for some G. We get G /' > from
B /' > by Proposition 6.5. By the induction hypothesis on γ ` A ¹ G , there exist some n′, k′, l′, E′ and F ′ such
that

– G ' •n(E′→ F ′),
– m+k′ ≤ n′, and
– γ ` •k′E ¹ •l′C and γ ` •l′D ¹ •k′F are derivable.

Therefore, by the induction hypothesis on γ ` G ¹ B , there exist some n, k′′, l′′, E and F such that

– B ' •n(E → F),
– n′+k′′ ≤ n, and
– γ ` •k′′E ¹ •l′′E′ and γ ` •l′′F ′ ¹ •k′′F are derivable.

Taking k and l as k = k′ + k′′ and l = l′ + l′′, we get (a1) through (a3).

Case: (¹-•). In this case, γ ` A′ ¹ B′ are derivable for some A′ and B′ such that A = •A′ and B = •B′. We
get B′ /' > from B /' > by Proposition 5.9, and m > 0 and A′ ' •m−1(C → D) from A ' •m(C → D) by
Propositions 5.14.1 and 5.15. Therefore, by the induction hypothesis, there exist some n′, k, l, E and F such that:

– B′ ' •n′(E → F),
– m−1+k ≤ n′, and
– γ ` •kE ¹ •lC and γ ` •lD ¹ •kF are derivable.

It then suffices to take n as n = n′ + 1.

18

Case: (¹-→). In this case, γ ` B1 ¹ A1 and γ ` A2 ¹ B2 are derivable for some A1, A2, B1 and B2 such
that A = A1 →A2 and B = B1 →B2. Since A ' •m(C →D), we get m = 0 by Proposition 5.15, and

– D ' A2 ' >, or
– C ' A1 and D ' A2

by Propositions 5.14.2. In the former case, we get B2 ' > from γ ` A2 ¹ B2 by Proposition 6.5; and hence,
B = B1 → B2 ' C →D by ('-→>). Therefore, taking n, k, E, F and l as n = 0, k = 0, E = C, F = D and
l = 0, we get (a1) through (a3) in this case. In the latter case, it suffices to take n, k, l, E and F as n = 0, k = 0,
l = 0, E = B1 and F = B2.

Case: (¹-approx). Since B = •A in this case, it suffices to take n, k, l, E and F as n = m + 1, k = 0, l = 0,
E = C and F = D.

Case: (¹-→•). In this case, A = A1→A2 and B = •A1→•A2 for some A1 and A2. Since A ' •m(C→D), we
get m = 0 by Proposition 5.15, and

– D ' A2 ' >, or
– C ' A1 and D ' A2

by Propositions 5.14.2. In the former case, B = •A1→•A2 ' •A1→•> ' •A1→> ' C→D by ('-→>) and
Proposition 5.9. Therefore, taking n, k, l, E and F as n = 0, k = 0, l = 0, E = C and F = D, we get (a1) through
(a3) in this case. In the latter case, it suffices to take n, k, l, E and F as n = 0, k = 0, l = 1, E = •C and F = •D.

Case: (¹-•→). In this case, A = •A1→•A2 and B = •(A1→A2) for some A1 and A2. Since A ' •m(C→D),
we get m = 0 by Proposition 5.15, and

– D ' •A2 ' >, or
– C ' •A1 and D ' •A2

by Propositions 5.14.2. In the former case, A2 ' > by Proposition 5.16, and hence, B = •(A1 → A2) ' •(A1 →
>) ' •(C → D) by ('-→>). Therefore, taking n, k, l, E and F as n = 1, k = 0, l = 0, E = C and F = D,
we get (a1) through (a3) in this case. In the latter case, it suffices to take n, k, l, E and F as n = 1, k = 1, l = 0,
E = A1 and F = A2.

Case: (¹-µ). In this case, γ ∪ {X ¹ Y } ` A′ ¹ B′ is derivable for some X , Y , A′ and B′ such that:

A = µX.A′, (8)
B = µY.B′, (9)
X /∈ FTV (γ) ∪ FTV (B′), and (10)
Y /∈ FTV (γ) ∪ FTV (A′). (11)

Since A′ is proper in X , we get A′ /' X . Note that •m(C → D) ' A = µX.A′ ' A′[A/X] by (8) and ('-fix).
Therefore, by Proposition 5.18, there exist some C ′ and D′ such that:

A′ ' •m(C ′→D′) (12)
D ' D′[A/X], and (13)
C ' C ′[A/X] or D ' D′[A/X] ' >, (14)

Since we can get B′ /' > from B /' >. By the induction hypothesis, there exist some n, k′, l′, E′ and F ′ such that:

(a1′) B′ ' •n(E′→ F ′),
(a2′) m+k′ ≤ n, and
(a3′) γ ∪ {X ¹ Y } ` •k′E′ ¹ •l′C ′ and γ ∪ {X ¹ Y } ` •l′D′ ¹ •k′F ′ are derivable.

There are two subcases as follows.

19

Subcase: D′[A/X] ' >. Since A ' •m(C →D) implies A /' > by Proposition 5.15, we get

D′ ' >, (15)

by Proposition 4.9.2; and therefore,

F ′ ' > (16)

from (a3′) by Propositions 6.5 and 5.16. Hence,

B ' B′[B/Y] (by (9) and ('-fix))
' (•n(E′→ F ′))[B/Y] (by (a1′))
' (•n(E′→>))[B/Y] (by (16))
' (•n(C ′→>))[B/Y] (by ('-→>))
' (•n(C ′→D′))[B/Y] (by (15))
' (•n−mA′)[B/Y] (by (12))
= •n−mA′ (by (11))
' •n(C →D) (by (12))

Therefore, in this subcase, we get (a1) through (a3) by taking k, l, E and F as k = 0 l = 0, E = C and F = D.

Subcase: D′[A/X] /' >. In this case, obviously D′ /' >, and we get

C ' C ′[A/X] (17)

from (14). Let E and F be as E = E′[A/X, B/Y] and F = F ′[A/X, B/Y].

B ' B′[B/Y] (by (9) and ('-fix))
= B′[A/X, B/Y] (by (10))
' (•n(E′→ F ′))[A/X, B/Y] (by (a1′))
= •n(E → F)

Since D′ /' >, and since •m(C ′[B/Y]→D′[B/Y]) = •m(C ′→D′)[B/Y] ' A′[B/Y] = A′ ' •m(C ′→D′)
by (11) and (12), we get C ′[B/Y] ' C ′ and D′[B/Y] ' D′ by Proposition 5.14; and therefore,

C ′[A/X, B/Y] = C ′[B/Y][A/X] ' C ′[A/X] ' C, and
D′[A/X, B/Y] = D′[B/Y][A/X] ' D′[A/X] ' D

by (10), (13) and (17). Hence, taking k and l as k = k′ and l = l′, γ ` •kE ¹ •lC and γ ` •lD ¹
•kF are derivable, because so are γ ` •kE′[A/X, B/Y] ¹ •lC ′[A/X, B/Y] and γ ` •lD′[A/X, B/Y] ¹
•kF ′[A/X, B/Y] by (a3′) and Proposition 6.4. We thus get (a1) through (a3) also in this subcase.

We can prove the second part of the conjecture similarly. ut
Proposition 6.10. Let n and m be non-negative integers.

1. •n> /¹ •mP , •n> /¹ •mX and •n> /¹ •m(A→B).
2. •nP /¹ •mX and •nP /¹ •m(A→B).
3. •nX /¹ •mP and •nX /¹ •m(A→B).
4. •n(A→B) /¹ •mP and •n(A→B) /¹ •mX .
5. •A /¹ P , •A /¹ X , and •A /¹ B → C.

Proof. Obvious from Propositions 6.6, 6.7, 6.8, 6.9, 5.9 and 5.15. ut
Proposition 6.11. If γ ` •nA ¹ A is derivable and A /' >, then n = 0.

Proof. Straightforward from Propositions 6.7, 6.8 and 6.9 since γ ` •nAc ¹ Ac is also derivable and Ac /' >.

20

7 The typing rules

We now define the typing rules of λ•µ. According to the intended meaning of •, two new typing rules, (•) and (¹),
are added and the (→Eλµ) rule is generalized to handle types with the •-modality.

Definition 7.1 (Typing rules). Typing contexts for λ•µ are defined similarly to the case of λµ. Let τ be a mapping
that assigns a type constant τ(c) to each individual constant c. The typing system λ•µ is defined relatively to τ by
the following derivation rules:

Γ ∪ {x : A} ` x : A
(var)

Γ ` c : τ(c)
(const)

Γ ` M : >
(>)

•Γ ` M : •A
Γ ` M : A

(•)
Γ ` M : A ` A ¹ B

Γ ` M : B
(¹)

Γ ∪ {x : A} ` M : B

Γ ` λx. M : A→B
(→ I)

Γ1 ` M : •n(A→B) Γ2 ` N : •nA

Γ1 ∪ Γ2 ` MN : •nB
(→E)

where •Γ denotes the typing context {x1 : •A1, x2 : •A2, . . . , xn : •An}when Γ = { x1 : A1, x2 : A2, . . . , xn :
An}.

The (•)-rule represents the fact that every possible world n has its successor n+1. Since the interpretation of Γ `
M : A in the world n is identical to the one of •Γ ` M : •A in the world n+1, Γ ` M : A is valid whenever
so is •Γ ` M : •A . The (→E)-rule allows us to derive ` λx. λy. xy : •(A→B)→•A→•B for every A and
B. Therefore, •(A→B) and •A→•B are logically equivalent, even though not equivalent as sets of λ-terms. Note
that •A→•B ¹ •(A→B), but •(A→B) /¹ •A→•B.

Example 7.2. We can derive Curry’s fixed-point combinator Y in λ•µ; more precisely, the following is derivable.

` λf. (λx. f (xx)) (λx. f (xx)) : (•X →X)→X

Let a formula A = µY.•Y →X and a derivation Π as follows:

Π = f : •X →X ` f : •X →X
(var)

x : •A ` x : •A
(var)

x : •A ` x : •(•A→X)
(')

x : •A ` x : •A
(var)

x : •A ` x : ••A
(¹)

x : •A ` xx : •X
(→E)

f : •X →X, x : •A ` f (xx) : X
(→E)

f : •X →X ` λx. f (xx) : •A→X
(→I)

Then, we can derive Y as follows:

... Π
f : •X →X ` λx. f (xx) : •A→X

... Π
f : •X →X ` λx. f (xx) : •A→X

f : •X →X ` λx. f (xx) : •A
(¹)

f : •X →X ` (λx. f (xx)) (λx. f (xx)) : X
(→E)

` λf. (λx. f (xx)) (λx. f (xx)) : (•X →X)→X
(→I)

We can also observe that Turing’s fixed point combinator (λx.λf.f (xxf)) (λx. λf. f (xxf)) has the same type. The
type (•X→X)→X gives a concise axiomatic meaning to the fixed point combinators; it says that they can produce
an element of X with a given function that works as an information pump from •X to X; in other words, they
provide the induction scheme discussed in Introduction. The type thus enables us to construct recursive programs
using the fixed point combinators without analyzing their computational behavior. We will see some examples of
such recursive programs in Section 14.

21

8 Basic properties of λ•µ

The typing system λ•µ enjoys some basic properties such as subject reduction property.

Proposition 8.1. If Γ ` M : B is derivable, then FV (M) ⊂ Dom(Γ).

Proof. By straightforward induction on the derivation of . Γ ` M : B . ut
Proposition 8.2. Let Γ = {x1 : A1, x2 : A2, . . . , xn : An} and Γ ′ = {x1 : A′1, x2 : A′2, . . . , xn : A′n}. If
Γ ` M : B is derivable, B ¹ B′, and A′i ¹ Ai for every i (1 ≤ i ≤ n), then Γ ′ ` M : B′ is also derivable.

Lemma 8.3. Let Γ1 and Γ2 be typing contexts such that Dom(Γ1) ∩ Dom(Γ2) = {}. If Γ1 ∪ Γ2 ` M : A is
derivable, then so is •Γ1 ∪ Γ2 ` M : •A .

Proof. By induction on the derivation. Use the property (¹-•→)-rule for the case that the last rule is (→I). ut
Lemma 8.4 (Substitution lemma). If Γ ∪ {x : A} ` M : B and Γ ` N : A are derivable, then so is
Γ ` M [N/x] : B .

Proof. By induction on the derivation of Γ1 ∪ {x : A} ` M : B , and by cases of the last rule. Use Lemma 8.3
when the last rule is (•). ut
Theorem 8.5 (Subject reduction). If Γ ` M : A is derivable and M →

β
M ′, then Γ ` M ′ : A is derivable.

Proof. By induction on the structure of M . Suppose that M →
β

M ′. We show that Γ ` M ′ : A by cases of the
form of M . Most of the cases are straight forward. In the case that M = M1M2 for some M1 and M2, the derivation
of Γ ` M : A must end with:

Γ ` M1M2 : >
(>)

... zero or more (¹) or

Γ ` M1M2 : A
(¹)

...
Γ ` M1 : •n(B → C)

...
Γ ` M2 : •nB

Γ ` M1M2 : •nC
(→E)

... zero or more (¹)

Γ ` M1M2 : A
(¹)

for some n, B and C such that •nC ¹ A. In the former case, Γ ` M ′ : A is derivable by (>) and (¹). So we
concentrate on the latter case. If C ' >, then Γ ` M ′ : A is derivable by (>) and (¹). Therefore, we also assume
that C ' > in the sequel. Since M1M2 →β M ′, there are three possible cases as follows:

(a) M1
∗→
β

M ′
1 and M ′ = M ′

1M2 for some M ′
1.

(b) M2
∗→
β

M ′
2 and M ′ = M1M ′

2 for some M ′
2.

(c) M1 = λy. L and M ′ = L[M2/y] for some y and L.

By the induction hypothesis, we have the derivations of Γ ` M ′
1 : •n(B → C) and Γ ` M ′

2 : •nB for (a) and
(b), respectively. Therefore, we get the derivation of Γ ` M ′ : •nC by applying (→E), and then Γ ` M ′ : A by
(¹) in these cases. As for (c), since > /¹ •n(B → C), the derivation of Γ ` λy. L : •n(B → C) must end with:

...
Γ ∪ {y : D} ` L : E

Γ ` λy. L : D→ E
... zero or more (¹)

(→I)

Γ ` λy. L : •n(B → C)

for some D and E such that D→E ¹ •n(B→C). Since we now have the assumption C /' >, by Proposition 6.9,
there exist some m, k, l, D′ and E′ such that:

– D→ E ' •m(D′→ E′),

22

– m+k ≤ n,
– •lE′ ¹ •kC and •kB ¹ •lD′.

Obviously m = 0 by Proposition 5.15; and D ' D′ and E ' E′ by Proposition 5.14.2 because we get E′ /' >
from C /' > and •lE′ ¹ •kC. Therefore,

•nB ¹ •l+n−kD′ ' •l+n−kD, and (18)
•l+n−kE ' •l+n−kE′ ¹ •nC. (19)

On the other hand, we get a derivation of Γ∪{y : •l+n−kD} ` L : •l+n−kE from the one of Γ∪{y : D} ` L : E
by Lemma 8.3. Since Γ ` M2 : •nB is derivable, so is Γ ` M2 : •l+n−kD by (18). We so get Γ ` L[M2/x] :
•l+n−kE by Lemma 8.4, and then, Γ ` L[M2/x] : •nC by (19). Finally, we get Γ ` L[M2/x] : A by applying
(¹). ut

9 Interpretations of types

Definition 9.1. Let <T , v > be a partially ordered set. We define a set A(T , v) of infinite sequences of elements
of T as follows:

A(T , v) = { <t0, t1, t2, . . . , tk, . . . > | tk+1 v tk ∈ T for every k } .

We denote the k-th element of t ∈ A(T , v) by tk. Note that t starts with its 0-th element t0. We extend v to
A(T , v) as:

t v s if and only if tk v sk for every k.

We also define vk, v<k, v≤k, =k, =<k and =≤k as follows:

t vk s if and only if tk v sk

t v<k s if and only if tl v sl for every l < k

t v≤k s if and only if tl v sl for every l ≤ k

t =k s if and only if tk = sk

t =<k s if and only if tl = sl for every l < k

t =≤k s if and only if tl = sl for every l ≤ k

Definition 9.2. Let <T , v > is a partially ordered set with the least element ⊥T . Let t = <t0, t1, t2, . . . > be an
element of A(T , v), and n a non-negative integer. We define an element t|<n of A(T , v) as follows:

(t|<n)k =
{

tk (if k < n)
⊥T (if n ≤ k)

Definition 9.3. Let <T , v > is a partially ordered set with the greatest element>T . We define an element>A(T ,v)

of A(T , v) as follows:
(>A(T ,v))k = >T .

We often write >A instead of >A(T ,v) when T and v is clear from the context.

Definition 9.4 (Interpretations of types). An interpretation of types is a tuple <T , v, θ, • , → > such that:

(i1) <T , v > is a partially ordered set with the least element ⊥T and the greatest element >T .
(i2) θ : TConst→A(T , v)
(i3) • : A(T , v)→A(T , v)
(i4) If t =<k s then • (t) =≤k • (s).
(i5) − → − : A(T , v)×A(T , v)→A(T , v)
(i6) If t′ =≤k t and s =≤k s′, then t → s =≤k t′ → s′.
(t1) • (>A) = >A.

23

(t2) t → >A = s → >A.
(s1) If t v<k s then • (t) v≤k • (s).
(s2) If t′ v≤k t and s v≤k s′, then t → s v≤k t′ → s′.
(s3) t v • (t).
(s4) t → s v • (t) → • (s).
(s5) • (t) → • (s) v • (t → s).

The conditions (i4) and (i6) are redundant, since (s1) and (s2) imply (i4) and (i6), respectively. Note also that the
condition (i4) implies • (t)0 = • (s)0 for every t, s ∈ A(T , v).

Definition 9.5. Let I = <T , v, θ, • , → > be an interpretation of types. We call a mapping ξ : TVar → A(T , v)
a type environment.

Definition 9.6 (Semantics of types). Let I = <T , v, θ, • , → > be an interpretation of types. We define a
mapping I : TExp× (TVar→A(T , v))→A(T , v) as follows:

I(P, ξ) = θ(P)

I(X, ξ) = ξ(X)

I(•A, ξ) = • (I(A, ξ))

I(A→B, ξ) =

{
>A → >A (if B is a >-variant)

I(A, ξ) → I(B, ξ) (otherwise)

I(µX.A, ξ) = I(A[µX.A/X], ξ)

Note that the I(A, ξ)k is defined by induction on the lexicographic ordering of <k, r(A)> because I(•A, ξ)k only
depends on I(A, ξ)l (l < k) by Definition 9.4 (i4).

Proposition 9.7. Let I = <T , v, θ, • , → > be an interpretation of types, and ξ a type environment.

1. If X /∈ FTV (A), then I(A, ξ) = I(A, ξ[t/X]) for every t ∈ A(T , v).
2. I(A[B/X], ξ) = I(A, ξ[I(B, ξ)/X]).

Proof. It suffices to prove the following:

1′. If X /∈ FTV (A), then I(A, ξ) =≤k I(A, ξ[t/X]) for every k and t ∈ A(T , v).
2′. I(A[B/X], ξ) =≤k I(A, ξ[I(B, ξ)/X]) for every k.

The proof proceeds by straightforward induction the lexicographic ordering of <k, r(A)> using Definitions 9.4 and
9.6. In this proof we need only the conditions (i1) through (i6) of Definition 9.4. ut
Proposition 9.8. Let I = <T , v, θ, • , → > be an interpretation of types, and ξ a type environment. If

(a) t =<k s and A is proper in X , or
(b) t =≤k s,

then I(A, ξ[t/X]) =≤k I(A, ξ[s/X]).

Proof. By induction on the lexicographic ordering of <k, r(A)>, and by cases of the form of A. We need only the
conditions (i1) through (i6) of Definition 9.4. Suppose that (a) or (b) holds.

Case: A = P . Obvious since I(P, ξ) does not depend on ξ by Definition 9.6

Case: A = Y . If Y /= X , it is similar to the previous case. Otherwise, i.e., if Y = X , then A is not proper in X .
Therefore, we get I(A, ξ[s/X]) = s =≤k t = I(A, ξ[t/X]) from (b).

Case: A = •A′. Note that A is proper in X in this case. Since t =<k s by (a) or (b), we get I(A′, ξ[t/X]) =<k

I(A′, ξ[s/X]) by the induction hypothesis. Hence, I(•A′, ξ[t/X]) = • (I(A′, ξ[t/x])) =≤k • (I(A′, ξ[s/X])) =
I(•A′, ξ[s/X]) by Definitions 9.4 (i4) and 9.6.

24

Case: A = A1 →A2. If A2 is a >-variant, then trivial from Definition 9.6. Otherwise, since r(A1), r(A2) < r(A),
we get I(A1, ξ[t/X]) =≤k I(A1, ξ[s/X]) and I(A2, ξ[t/X]) =≤k I(A2, ξ[s/X]) by the induction hypothesis.
Therefore, I(A1 → A2, ξ[t/X]) = I(A1, ξ[t/X]) → I(A2, ξ[t/X]) =≤k I(A1, ξ[s/X]) → I(A2, ξ[s/X]) =
I(A1 →A2, ξ[s/X]) by Definitions 9.4 (i6) and 9.6.

Case: A = µY.A′. We can assume that Y /∈ {X} without loss of generality. Note that r(A′[µY.A′/Y]) <
r(µY.A′) by Proposition 4.6; and A′[µY.A′/Y] is proper in X if and only if so is µY.A′, by Proposition 5.5.2.

I(µY.A′, ξ[t/X]) = I(A′[µY.A′/Y], ξ[t/X]) (by Definition 9.6)
=≤k I(A′[µY.A′/Y], ξ[s/X]) (by the induction hypothesis)
= I(µY.A′, ξ[s/X]) (by Definition 9.6)

ut

Remark 9.9. By considering the following distance function over A(T , v), we obtain a complete metric space of
types.

d(<s0, s1, s2, . . . >, <t0, t1, t2, . . . >) =
{

0 (sk = tk for every k)
2−min{ k | sk /= tk } (otherwise)

Proposition 9.8 says:

– For every type expression A and type variable X , the map f : t 7→ I(A, ξ[t/X]) is non-expansive.
– In particular, if A is proper in X , then the map f is contractive.

Although we can also justify the rules ('-fix) and ('-uniq) for the equality ' and (¹-µ) for the subtyping relation
¹ by regarding I(µX.A, ξ) as the uniq fixed point of the contractive map f : t 7→ I(A, ξ[t/X]) with the help of
the Banach fixed-point theorem, we take a more direct approach to show the soundness of such rules.

Lemma 9.10. Let I = <T , v, θ, • , → > be an interpretation of types, and ξ a type environment. If A ' B, then
I(A, ξ) = I(B, ξ).

Proof. By induction on the derivation of A ' B, and by cases of the last rule in the derivation. In this proof we need
only the conditions (i1) through (t2) of Definition 9.4.

Cases: ('-reflex), ('-symm) and ('-trans). Obvious because = is an equivalence relation.

Case: ('-•). In this case, there exist some A′ and B′ such that A = •A′, B = •B′ and A′ ' B′. We have I(A′,
ξ) = I(B′, ξ) by the induction hypothesis. Therefore, I(•A′, ξ) = • (I(A′, ξ)) = • (I(B′, ξ)) = I(•B′, ξ) by
Definition 9.6.

Case: ('-→). Similar to the previous case.

Case: ('-→>). Trivial from Definition 9.6.

Case: ('-fix). For some X and A′, A = µX.A′, B = A′[µX.A′/X]. Therefore, I(µX.A′, ξ) = I(A′[µX.
A′/X], ξ) = I(B, ξ) by Definition 9.6.

Case: ('-uniq). There exist some X and C such that B = µX.C, A ' C[A/X] and C is proper in X . By the
induction hypothesis,

I(A, ξ′) = I(C[A/X], ξ′) for every ξ′. (20)

We show I(A, ξ) =≤k I(µX.C, ξ) for every k by induction on k. We have

I(A, ξ) =<k I(µX.C, ξ) (21)

25

by the induction hypotheses on k. Therefore,

I(A, ξ) = I(C[A/X], ξ) (by (20))
= I(C, ξ[I(A, ξ)/X] (by Proposition 9.7.2)

=≤k I(C, ξ[I(µX.C, ξ)/X]) (by (21) and Proposition 9.8)
= I(C[µX.C/X], ξ) (by Proposition 9.7.2)
= I(µX.C, ξ) (by Definition 9.6)

ut

Proposition 9.11. Let I = <T , v, θ, • , → > be an interpretation of types, and ξ a type environment.

1. I(>, ξ) = >A.
2. I(A→B, ξ) = I(A, ξ) → I(B, ξ).

Proof. For the part 1, I(>, ξ) = I(•X, ξ[I(>, ξ)/X]) = • (I(X, ξ[I(>, ξ)/X])) = • (I(>, ξ)) by Defini-
tion 9.6. Therefore, for every k, I(>, ξ) =<k >A implies I(>, ξ) =≤k >A, by (i4) and (t1) of Definition 9.4. We
now get I(>, ξ)k = >T by induction on k. As for the part 2, if B is not a >-variant, trivial from Definition 9.6.
Otherwise, I(B, ξ) = >A by the part 1 and Lemma 9.10; and therefore, I(A, ξ) → I(B, ξ) = I(A, ξ) → >A =
>A → >A by Definition 9.4 (t2). ut

Definition 9.12. Let I = <T , v, θ, • , → > be an interpretation of types, ξ a type environment, and γ a subtyping
assumption. We write ξ |= γ if and only if ξ(X) v ξ(Y) for every {X ¹ Y } ⊂ γ.

Lemma 9.13. Let I = <T , v, θ, • , → > be an interpretation of types, and ξ a type environment. If γ ` A ¹ B
is derivable and ξ |= γ, then I(A, ξ) v I(B, ξ).

Proof. By induction on the derivation of γ ` A ¹ B , and by cases of the last subtyping rule applied in the
derivation.

Case: (¹-assump). In this case, A = X and B = Y for some X and Y such that {X ¹ Y } ⊂ γ. We get
ξ(X) v ξ(Y) from ξ |= γ.

Case: (¹->). Obvious from Proposition 9.11.1.

Case: (¹-reflex). Obvious from Lemma 9.10.

Case: (¹-trans). For some C, γ1 and γ2 such that γ = γ1 ∪ γ2, the derivation ends with:

...
γ1 ` A ¹ C

...
γ2 ` C ¹ B

γ ` A ¹ B
(¹-trans)

Since γ = γ1 ∪ γ2, we get ξ |= γ1 and ξ |= γ2 from ξ |= γ. Therefore, I(A, ξ) v I(C, ξ) v I(B, ξ) by the
induction hypothesis.

Case: (¹-•). For some A′ and B′ such that A = •A′ and B = •B′, the derivation ends with:

...
γ ` A′ ¹ B′

γ ` •A′ ¹ •B′ (¹-•)

We get I(A′, ξ) v I(B′, ξ) by the induction hypothesis. Therefore, I(•A′, ξ) = • (I(A′, ξ)) v • (I(B′, ξ)) =
I(•B′, ξ) by the condition (s1) of Definition 9.4 and Definition 9.6.

26

Case: (¹-→). For some A1, A2, B1, B2, γ1 and γ2 such that A = A1 → A2, B = B1 → B2 and γ = γ1 ∪ γ2, the
derivation ends with: ...

γ1 ` B1 ¹ A1

...
γ2 ` A2 ¹ B2

γ1 ∪ γ2 ` A1 →A2 ¹ B1 →B2

(¹-→)

Similarly to the previous case, we get I(B1, ξ) v I(A1, ξ) and I(A2, ξ) v I(B2, ξ) by the induction hypothesis.
Therefore, I(A1 → A2, ξ) = I(A1, ξ) → I(A2, ξ) v I(B1, ξ) → I(B2, ξ) = I(B1 → B2, ξ) by the condition
(s2) of Definition 9.4 and Definition 9.6.

Case: (¹-approx). B = •A in this case. We get I(A, ξ) v • (I(A, ξ)) = I(•A, ξ) by the condition (s3) of
Definition 9.4 and Definition 9.6.

Case: (¹-→•). In this case, there exist some A1 and A2 such that A = A1 → A2 and B = •A1 → •A2. We get
I(A1 → A2, ξ) = I(A1, ξ) → I(A2, ξ) v • (I(A1, ξ)) → • (I(A2, ξ)) = I(•A1 → •A2, ξ) by the condition
(s4) of Definition 9.4 and Definition 9.6.

Case: (¹-•→). In this case, there exist some A1 and A2 such that A = •A1 → •A2 and B = •(A1 → A2). We
get I(•A1 → •A2, ξ) = • (I(A1, ξ)) → • (I(A2, ξ)) v • (I(A1, ξ) → I(A2, ξ)) = I(•(A1 → A2), ξ) by the
condition (s5) of Definition 9.4 and Definition 9.6.

Case: (¹-µ). For some X , Y , A′ and B′ such that A = µX.A′ and B = µY.B′, the derivation ends with:

...
γ ∪ {X ¹ Y } ` A′ ¹ B′

γ ` µX.A′ ¹ µY.B′ (¹-µ)

where X /∈ FTV (γ)∪FTV (B′), Y /∈ FTV (γ)∪FTV (A′), and A′ and B′ are proper in X and Y , respectively. We
show I(µX.A′, ξ) v≤k I(µY.B′, ξ) for every k by induction on k. Let ξ′ = ξ[I(A, ξ)|<k/X, I(B, ξ)|<k/Y].
Since ξ′ |= γ ∪ {X ¹ Y } by the induction hypothesis on k, we get

I(A′, ξ′) v I(B′, ξ′) (22)

by the induction hypothesis on the derivation. On the other hand,

I(µX.A′, ξ) = I(A′[µX.A′/X], ξ) (by Definition 9.6)
= I(A′, ξ[I(µX.A′, ξ)/X]) (by Lemma 9.7.2))

=≤k I(A′, ξ[I(µX.A′, ξ)|<k/X]) (by Lemma 9.8))
= I(A′, ξ′) (by Lemma 9.7.1 since Y /∈ FTV (A′))

Similarly, I(µY.B′, ξ) =≤k I(B′, ξ′). We therefore get I(µX.A′, ξ) v≤k I(µY.B′, ξ) by (22). ut

10 A realizability interpretation

In this section, we define a realizability interpretation of λ•µ, and show soundness of λ•µ with respect to the
interpretation.

Definition 10.1 (Realizability interpretations of λ•µ). A realizability interpretation of λ•µ is a tuple <V, ·, σ,
[[]]V, K, θ> such that:

1. <V, ·, σ, [[]]V> is a β-model of Exp.
2. K ⊂ V .
3. u · v ∈ K for every u ∈ K and v ∈ V .
4. θ : TConst→A({ S | K ⊂ S ⊂ V }, ⊂).

27

5. σ(c) ∈ θ(τ(c))k for every c and k.

Definition 10.2. Let I = <V, ·, σ, [[]]V, K, θ> be a realizability interpretation of λ•µ. We define an interpretation
of types Ir = <T , v, θ, • , → >, as follows:

1. T = { T | K ⊂ T ⊂ V }
2. T v S if and only if T ⊂ S.
3. • (t)k = { u ∈ V | u ∈ tl for every l < k }

4. (t → s)k =

u

∣∣∣∣∣∣

1. u ∈ (t → s)l for every l < k.
2. u · v ∈ sk for every v ∈ tk.
3. u ∈ K or u = [[λx. M]]Vρ for some x, ρ and M .

We can easily check that Ir is an interpretation of types. We often write I(A)ξ and I(A)ξ
k instead of Ir (A, ξ) and

Ir (A, ξ)k, respectively. It should be noted that I(A)ξ satisfies the following equations:

I(P)ξ
k = θ(P)k

I(X)ξ
k = ξ(X)k

I(•A)ξ
k = { u | u ∈ I(A)ξ

l for every l < k }

I(A→B)ξ
k =

u

∣∣∣∣∣∣∣∣

1. u ∈ I(A→B)ξ
l for every l < k.

2. u · v ∈ I(B)ξ
k for every v ∈ I(A)ξ

k.

3. u ∈ K or u = [[λx. M]]Vρ for some x, ρ and M .

I(µX.A)ξ
k = I(A[µX.A/X])ξ

k

The definition of I(•A) says that:

– I(•A)ξ
0 = V , and

– I(•A)ξ
k+1 = I(A)ξ

k.

The set K takes a rather technical role (cf. [21]) in this semantics, and is only used to show head normalizability
of λ-terms of certain types in the proof of Theorem 12.21. It can usually be considered an empty set. The third
condition for u ∈ I(A → B)ξ

k implies that we distinguish λx. Mx from M unless M =
β

λy. N for some y and

N . Note that I(•(A→ B))ξ
0 = V whereas I(•A→ •B)ξ

0 /= V . Thus, •(A→ B) ' •A→ •B is not valid in this
interpretation. It should be noted that if we had I(•(A→B))ξ

0 = I(•A→•B)ξ
0, then it would be also the case that

I(•(A→B))ξ
k = I(•A→•B)ξ

k for every k. We can also consider a variant system of λ•µ with this equality, where
we have to drop the third condition from u ∈ I(A→ B)ξ

k to get its soundness. However, we omit the details from
this paper.

The typing system λ•µ is sound with respect to this semantics.

Lemma 10.3. 1. If A ' B, then I(A)ξ = I(B)ξ.
2. If A ¹ B, then I(A)ξ v I(B)ξ.

Proof. Straightforward from Lemmas 9.10 and 9.13, respectively, since Ir is an interpretation of type. Note that
I(A)ξ = Ir (A, ξ). ut
Theorem 10.4 (Soundness). Let the tuple <V, ·, σ, [[]]V, K, θ> be a realizability interpretation of λ•µ, and ξ a
type environment. If {x1 : A1, . . . , xn : An} ` M : B is derivable in λ•µ, then [[M]]Vρ ∈ I(B)ξ

k for every k, ξ

and ρ provided ρ(xi) ∈ I(Ai)
ξ
k for every i (i = 1, 2, . . . , n).

Proof. By induction on the derivation and by cases of the last rule used in the derivation. Most cases are straightfor-
ward. Use Lemma 10.3 for the case of (¹). Prove it by induction on k in the case of (→I).

Let Γ = {x1 : A1, . . . , xn : An}, and suppose that Γ ` M : B is derivable, and ρ(xi) ∈ I(Ai)
ξ
k (i =

1, 2, . . . , n). In the sequel, let [[L]] and I(A)k be abbreviations for [[L]]Vρ and I(A)ξ
k, respectively.

Case: (var). M = xj and B = Aj for some j (1 ≤ j ≤ n). Therefore, by assumption, [[M]] = [[xj]] = ρ(xj) ∈
I(Aj)k = I(B)k.

28

Case: (const). M = c and B = τ(c) for some c. Since <V, ·, σ, [[]]V, K, θ> is a realizability interpretation of
λ•µ, [[M]] = [[c]] = σ(c) ∈ θ(τ(c))k = I(τ(c))k = I(B)k.

Case: (>). Obvious since I(>)k = V for every k by Proposition 9.11.1.

Case: (•). The derivation ends with:

...
{x1 : •A1, x2 : •A2, . . . , xn : •An} ` M : •B
{x1 : A1, x2 : A2, . . . , xn : An} ` M : B

(•)

Since ρ(xi) ∈ I(Ai)k, we have ρ(xi) ∈ I(•Ai)k+1 for every i. Therefore, by the induction hypothesis, we get
[[M]] ∈ I(•B)k+1, that is, [[M]] ∈ I(B)k.

Case: (¹). For some B′, the derivation ends with:

...
Γ ` M : B′

...
` B′ ¹ B

Γ ` M : B
(¹)

We get [[M]] ∈ I(B)k by Proposition 10.3 because [[M]] ∈ I(B′)k by the induction hypothesis.

Case: (→I). For some y, L, B1 and B2 such that y /= xi (i = 1, 2, . . . , n), M = λy. L and B = B1 → B2, the
derivation ends with: ...

Γ ∪ {y : B1} ` L : B2

Γ ` λy. L : B1 →B2

(→I)

Since ρ(xi) ∈ I(Ai)
ξ
k for every i, we also have ρ(xi) ∈ I(Ai)ξ

m for every i and m ≤ k. Therefore, by the induction
hypothesis on the derivation, we have:

for every m ≤ k, [[L]]Vρ ∈ I(B2)m provided ρ(y) ∈ I(B1)m. (23)

We show [[λy. L]] ∈ I(B1→B2)m for every m ≤ k by accumulative induction on m. The first condition, [[λy. L]] ∈
I(B1 →B2)l for every l < m, is trivial from the induction hypothesis on m, and the second one is also established
because [[λy. L]]Vρ · u = [[L]]Vρ[u/y] ∈ I(B2)m by (23), whenever u ∈ I(B1)m. The last condition is trivial.

Case: (→E). For some n, M1, M2, B′ and C such that M = M1M2 and B = •nB′, the derivation ends with:

...
Γ ` M1 : •n(C →B′)

...
Γ ` M2 : •nC

Γ ` M1M2 : •nB′ (→E)

We assume that k ≥ n since [[M]] ∈ I(B)k is trivial if k < n. By the induction hypothesis, we get [[M1]] ∈
I(•n(C → B′))k = I(C → B′)k−n, and [[M2]] ∈ I(•nC)k = I(C)k−n. Therefore, [[M1M2]] = [[M1]] · [[M2]] ∈
I(B′)k−n = I(•nB′)k by the definition of I(C →B′). ut

11 Soundness of λ•µ with respect to the models of λµ

In this section, we show that the typing system λ•µ is also sound with respect to a certain class of models of λµ if
we ignore the •-operators.

Definition 11.1. Let A be a type expression of λ•µ. We define er(A) as the type expression (of λµ) obtained from
A by erasing all occurrences of • from A. We similarly define er(Γ) for typing contexts.

29

Lemma 11.2. Let A and B be type expressions of λ•µ. Then, er(A[B/X]) = er(A)[er(B)/X].

Proof. By induction on h(A), and by cases of the form of A. ut
Proposition 11.3. Let µX.A be a type expression of λ•µ. If er(A) is not λµ-proper in X , then µX.A ' >.

Proof. It suffices to show that A ' •nX for some n. By straightforward induction on h(A). ut
Proposition 11.4. Let A be a type expression of λ•µ. If A ' >, then er(A) 'λµ µX.X .

Proof. If A ' >, i.e., A is a >-variant, then er(A) = µX1.µX2. . . . µXn.Xi for some n, X1, X2, . . ., Xn and i
such that 1 ≤ i ≤ n; and therefore, er(A) 'λµ µX.X by ('λµ-fix) and Proposition 3.6. ut
Definition 11.5. A realizability model <V, ·, σ, [[]]V, T , δ, [[]]T > of λµ is standard if and only if it satisfies the
following:

1. [[µX.X]]Tη = V .
2. If C is λµ-proper in X , and [[A]]Tη = [[C[A/X]]]Tη for every η, then [[A]]Tη = [[µX.C]]Tη for every η.
3. If A and B are λµ-proper in X and Y , respectively, and if X /∈ FTV (B), Y /∈ FTV (A), and [[A]]Tη ⊂ [[B]]Tη

for every η, then [[µX.A]]Tη ⊂ [[µY.B]]Tη for every η.

Lemma 11.6. Let <V, ·, σ, [[]]V, T , δ, [[]]T > be a standard realizability model of λµ. If A ' B, then [[er(A)]]Tη =
[[er(B)]]Tη .

Proof. By induction on the derivation of A ' B, and by cases of the last rule applied in the derivation. The condition
[[µX.X]]Tη = V is required to validate the ('-→>)-rule. If the last rule is ('-fix), then A = µX.A′ and B =
A′[µX.A′/X] for some X and A′.

er(A) = er(µX.A′)
= µX. er(A′)
'λµ er(A′)[µX. er(A′)/X] (by ('λµ-fix))
= er(A′)[er(µX.A′)/X]
= er(A′[µX.A′/X]) (by Proposition 11.2)
= er(B)

Therefore, [[er(A)]]Tη = [[er(B)]]Tη by Definition 3.9.9. If the last rule is ('-uniq), then B = µX.C and A ' C[A/X]
for some X and C such that C is proper in X . For every η, we get:

[[er(A)]]Tη = [[er(C[A/X])]]Tη (by the induction hypothesis)

= [[er(C)[er(A)/X]]]Tη (by Proposition 11.2).

If er(C) is λµ-proper in X , then [[er(A)]]Tη = [[µX. er(C)]]Tη = [[er(B)]]Tη by Definition 11.5.2. Otherwise, A '
B = µX.C ' > by Proposition 11.3; and therefore, er(A) 'λµ er(B) by Proposition 11.4. We now get [[er(A)]]Tη =
[[er(B)]]Tη by Definition 3.9.9. ut
Lemma 11.7. Let <V, ·, σ, [[]]V, T , δ, [[]]T > be a standard realizability model of λµ. If A ¹ B, then [[er(A)]]Tη ⊂
[[er(B)]]Tη .

Proof. Prove a more general statement: if {X1 ¹ Y1, X2 ¹ Y2, . . . , Xn ¹ Yn} ` A ¹ B is derivable, then
[[er(A[X1/Y1, X2/Y2, . . . , Xn/Yn])]]Tη ⊂ [[er(B[X1/Y1, X2/Y2, . . . , Xn/Yn])]]Tη , by induction on the derivation
and by cases of the last rule applied in the derivation. Use Lemma 11.6 for the case (¹-reflex). Use Propositions 3.5
and 11.2 for (¹-trans) and (¹-→). Use the condition 3 of Definition 11.5 for (¹-µ). ut
Theorem 11.8 (Soundness w.r.t. standard models of λµ). Let <V, ·, σ, [[]]V, T , δ, [[]]T > be a standard realiz-
ability model of λµ. If {x1 : A1, x2 : A2, . . . , xn : An} ` M : B is derivable in λ•µ, then [[M]]Vρ ∈ [[er(B)]]Tη
for every η and ρ provided ρ(xi) ∈ [[er(Ai)]]

T
η (i = 1, 2, . . . , n).

Proof. By induction on the derivation of {x1 : A1, . . . , xn : An} ` M : B , and by cases of the last rule applied
in the derivation. Use Lemma 11.7 if the last rule is (¹). ut

30

12 Convergence of well-typed terms

The soundness theorem assures the convergence of well-typed λ-terms according to their types. In this section we
give such results.

Definition 12.1. The term model <V, ·, σ, [[]]V> of Exp is defined as follows:

1. V = Exp/=
β

2. M ·N = MN
3. σ(c) = c

4. [[x]]Vρ = ρ(x)

5. [[c]]Vρ = c

6. [[MN]]Vρ = [[M]]Vρ [[N]]Vρ
7. [[λx. M]]Vρ = λx. [[M]]Vρ[x/x]

Proposition 12.2. The term model <V, ·, σ, [[]]V> is a β-model of Exp.

Proposition 12.3. Let <V, ·, σ, [[]]V> be the term model of Exp. If ρ(x) = x for every x ∈ FV (M), then [[M]]Vρ =
M .

Definition 12.4. We define a set of λ-terms K0 as K0 = { xN1N2 . . . Nn | x ∈ Var, n ≥ 0 and Ni ∈
TExp/=

β
for every i (i = 1, 2, . . . , n) }.

12.1 Non > types and weakly head normalizable terms

Definition 12.5 (Weak head normal forms). A λ-term M is a weak head normal form if and only if M is either of
the following forms:

1. c
2. x N1 N2 . . . Nn, where n ≥ 0
3. λx. N

We say that M has a weak head normal form, or is weakly head normalizable, if M ∗→
β

M ′ for some weak head
normal form M ′.

Proposition 12.6. 1. If M =
β

c, then M ∗→
β

c.
2. If M =

β
xN1 N2 . . . Nn, then M ∗→

β
xN ′

1 N ′
2 . . . N ′

n for some N ′
1, N ′

2, . . ., N ′
n.

3. If M =
β

λx. L, then M ∗→
β

λx. L′ for some L′.

Proof. By induction on the length of the conversion M ↔
β

M1 ↔β M2 ↔β . . . ↔
β

Mn ↔β c (λx. L, xN1 N2 . . . Nn).
Use Church-Rosser property of untyped lambda calculus. ut
Theorem 12.7. If Γ ` M : A is derivable for some A such that A /' >, then M has a weak head normal form.

Proof. Consider the interpretation <V, ·, σ, [[]]V, K0, θ> of λ•µ, where <V, ·, σ, [[]]V> is the term model of λµ,
and θ(P)k = K0 ∪ { M | M =

β
c for some c ∈ Const } for every type constant P . Let ξ(X)k = K0 for every k and

X .
Suppose that A /' > and Γ ` M : A is derivable. Since A ' Ac, Γ ` M : Ac is also derivable. Fixing

ρ as ρ(x) = x for every x, we get M ∈ I(Ac)ξ
k for every ttenv and k by Theorem 10.4, because [[M]]Vρ = M by

Proposition 12.3, and ρ(x) = x ∈ K0 ⊂ I(Γ (x))ξ
k for every x ∈ Dom(Γ). We now show that M has a weak head

normal form by cases of the form of Ac.

Case: Ac = •nP . M obviously has a weak head normal form by Proposition 12.6, because M ∈ I(Ac)ξ
n =

I(P)ξ
0 = θ(P)k = K0 ∪ { M | M =

β
c for some c ∈ Const }.

Case: Ac = •nX . Also trivial by Proposition 12.6, because M ∈ I(Ac)ξ
n = I(X)ξ

0 = ξ(X)0 = K0.

Case: Ac = •n(B→C). In this case, M ∈ I(Ac)ξ
n = I(B→C)ξ

0 ⊂ K0 ∪ { M | M =
β

λy. L }. Therefore, N has
a weak head normal form. ut

31

12.2 Tail finite types

In this subsection, we show that every term of tail finite types is head normalizable. First, we define head normaliz-
able terms in a standard manner.

Definition 12.8 (Head normal forms). A λ-term M is a head normal form if and only if M is either of the following
forms:

1. c
2. λx1. λx2. . . . λxm. y N1 N2 . . . Nn, where m, n ≥ 0

We say that M has a head normal form, or is head normalizable, if M ∗→
β

M ′ for some head normal form M ′. We
also define Böhm trees of λ-terms in the standard manner according to this definition of head normal forms, in which
λ-terms without head normal forms are denoted by ⊥.

Next we define tail finite type expressions in three different ways, i.e., semantically, syntactically, and in a
somewhat intuitive way. We start with semantical definition.

Definition 12.9. We define an interpretation of types I t = <T t, vt, θt, • t, →t>, as follows:

1. T t = N+ , where N+ = {0, 1, 2, . . . , ∞}.
2. n vt m if and only if n ≤ m
3. θt(P)k = 0
4. • t(t)k = inf l<k tl, where • t(t)0 = ∞
5. (t →t s)k = sk + 1

We can easily check that I t is an interpretation of types.

Lemma 12.10. Suppose that ξ(X) vt ξ′(X) for every X ∈ TVar. Then I t(A, ξ) vt I t(A, ξ′).

Proof. By induction on h(A), and by cases of the form of A. The only interesting case is when A = µX.A′ for some
X and A′. It suffices to show that I t(µX.A′, ξ) vt

≤k I t(µX.A′, ξ′) for every k. The proof proceeds by induction
on k. By the induction hypothesis on k, we have

I t(µX.A′, ξ) vt
<k I t(µX.A′, ξ′). (24)

Note also that A′ is proper in X .

I t(µX.A′, ξ) = I t(A′[µX.A′/X], ξ) (by Definition 9.6)

= I t(A′, ξ[I t(µX.A′, ξ)/X]) (by Definition 9.7.2)

vt
≤k I t(A′, ξ[I t(µX.A′, ξ′)/X]) (by (24) and Proposition 9.8)

vt I t(A′, ξ′[I t(µX.A′, ξ′)/X]) (by the induction hypothesis on h(A))

= I t(A′[µX.A′/X], ξ′) (by Proposition 9.7.2)

= I t(µX.A′, ξ′) (by Definition 9.6)
ut

Definition 12.11. Let V be a set of type variables. We define tlV (A) (∈ N+) as:

tlV (A) = inf
k
I t(A, ξt

V)k,

where ξt
V is a type environment for the interpretation I t defined as follows:

ξt
V (X)k =

{∞ (X ∈ V)
0 (X /∈ V)

32

Proposition 12.12. Let V be a set of type variables.

tlV (P) = 0, tlV (X) = ξt
V (X), tlV (•A) = tlV (A),

tlV (A→B) = tlV (B) + 1, tlV (µX.A) = tlV (A[µX.A/X]).

Note that ∞+ 1 = ∞.

Proof. Obvious from Definitions 9.6 and 12.11, since I t is an interpretation of types. ut

Proposition 12.13. 1. If X /∈ FTV (A), then tlV (A) = tlV ∪{X}(A).
2. If A ' B, then tlV (A) = tlV (B).
3. If A ¹ B, then tlV (A) ≤ tlV (B).

Proof. Straightforward from Proposition 9.7.1, Lemma 9.10 and Lemma 9.13, respectively, since I t is an interpre-
tation of type. ut

Definition 12.14 (Tail finite types). A type expression A is tail finite if and only if tl{}(A) < ∞.

Note that the notion “tail finite” has been defined in a semantical manner through Definition 12.11. We can
give another definition for the notion syntactically, by which we can realize the decidability of this property. The
equivalence between the two definitions will be shown by Proposition12.18.

Definition 12.15. Let V be a set of type variables. We define a subset TFV of TExp as follows:

TFV ::= TConst
| X (X ∈ TVar− V)
| •TFV

| TExp→ TFV

| µX.TFV ∪{X} (X ∈ TVar).

We can easily check that TFV is closed under α-conversion of type expressions. We denote TF{} by TF.

Proposition 12.16. Let A be a type expression of λµ.

1. If V ⊂ V ′, then TFV ′ ⊂ TFV.
2. If X /∈ ETV +(A) and A ∈ TFV, then A ∈ TFV ∪{X}.

Proof. By straightforward induction on the structure of A. ut

Proposition 12.17. Let A be a type expression, and V a set of type variables.

1. If A ∈ TFV ∪{X}, then A[B/X] ∈ TFV.
2. If A ∈ TFV and B ∈ TFV, then A[B/X] ∈ TFV.
3. If A[B/X] ∈ TFV, then A ∈ TFV−{X}.
4. If A[B/X] ∈ TFV, then A ∈ TFV ∪{X} or B ∈ TFV.

Proof. By induction on the structure of A, and by cases of the form of A.

Case: A is a type constant. Trivial because A[B/X] = A. Use Proposition 12.16.1 for the parts 1 and 3, and
Proposition 12.16.2 for the part 4.

Case: A = Y for some Y . For the part 1, we get X /= Y from A ∈ TFV ∪{X}. Therefore, A[B/X] = A ∈
TFV ∪{X} ⊂ TFV by Proposition 12.16.1. For the part 2, suppose that A ∈ TFV and B ∈ TFV. We similarly get
A ∈ TFV if X /= Y . Otherwise, i.e., if X = Y , then A[B/X] = B ∈ TFV. For the parts 3 and 4, suppose that
A[B/X] ∈ TFV. If X /= Y , then A = A[B/X] ∈ TFV ; therefore, A ∈ TFV−{X} by Proposition 12.16.1, and
A ∈ TFV ∪{X} by Proposition 12.16.2, since X /∈ FTV (A). Otherwise, i.e., if X = Y , then A = X ∈ TFV−{X}

by Definition 12.15, and B = A[B/X] ∈ TFV.

33

Case: A = C → D for some C and D. For the part 1, suppose that A ∈ TFV ∪{X}. Then, D ∈ TFV ∪{X} by
Definition 12.15. Therefore, we get D[B/X] ∈ TFV by the induction hypothesis, and then, A[B/X] = C[B/X]→
D[B/X] ∈ TFV by Definition 12.15. Similar for the parts 2, 3 and 4.

Case: A = µY.C for some Y and C. We can assume that Y /∈ FTV (B) ∪ {X}. For the part 1, we get C ∈
TFV ∪{X, Y } from A ∈ TFV ∪{X} by Definition 12.15. Therefore, C[B/X] ∈ TFV ∪{X} by the induction hypothesis.
We now get A[B/X] = (µY.C)[B/X] = µY.C[B/X] ∈ TFV by Definition 12.15. Similar for the parts 2, 3 and
4. ut

A type expression A is tail finite if and only if A ∈ TF. This is shown by proving the following proposition.

Proposition 12.18. Let V be a set of type variables. tlV (A) < ∞ if and only if A ∈ TFV.

Proof. By induction on h(A), and by cases of the from of A. The only interesting case is when A = µX.A′ for some
X and A′. First, we show the “if” part. If µX.A′ ∈ TFV, then A′ ∈ TFV ∪{X} by Definition 12.15. Therefore,

tlV (µX.A′) = inf
k
I t(µX.A′, ξt

V)k

= inf
k
I t(A′[µX.A′/X], ξt

V)k (by Definition 9.6)

= inf
k
I t(A′, ξt

V [I t(µX.A′, ξt
V)/X])k (by Proposition 9.7.2)

≤ inf
k
I t(A′, ξt

V ∪{X})k (by Lemma 12.10)

= tlV ∪{X}(A′)
< ∞ (by the induction hypothesis)

For the “only if” part, we show the contrapositive. Suppose that µX.A′ /∈ TFV, i.e., A′ /∈ TFV ∪{X} by Def-
inition 12.15. We have tlV ∪{X}(A′) = ∞ by the induction hypothesis; and since tlV ∪{X}(A′) = infk I t(A′,
ξt
V ∪{X})k,

I t(A′, ξt
V ∪{X})k = ∞ for every k. (25)

It suffices to show I t(µX.A′, ξt
V)k = ∞ for every k. The proof proceeds by induction on k. By the induction

hypothesis, I t(µX.A′, ξt
V)l = ∞ for every l < k, i.e.:

I t(µX.A′, ξt
V) =<k ξt

{X}(X). (26)

Note also that A′ is proper in X .

I t(µX.A′, ξt
V)k = I t(A′[µX.A′/X], ξt

V)k (by Definition 9.6)

= I t(A′, ξt
V [I t(µX.A′, ξt

V)/X])k (by Proposition 9.7.2)

= I t(A′, ξt
V [ξt

{X}/X])k (by (26) and Proposition 9.8)

= I t(A′, ξt
V ∪{X})k

= ∞ (by (25)) ut

We can define the notion “tail finite” in another way, by considering (possibly infinite) expansions of type ex-
pressions. Proposition 12.20 provides us the equivalence.

Proposition 12.19. Let V be a set of type variables. If (a) A /' •kX , (b) A /' •k(B→C), and (c) A /' > for every
k, X , B, C such that X ∈ V , then tlV (A) = 0.

Proof. By cases of the form of Ac. First, we get Ac /= > and Ac /= •n(B → C) for every n, B and C, from (b)
and (c). If Ac = •nP for some n and P , then obviously tlV (A) = 0. If Ac = •nX for some n and X , then also
tlV (A) = 0 since X /∈ V by (a). ut

34

Proposition 12.20. Let V be a set of type variables. tlV (A) = n if and only if A ' •m1(B1→•m2(B2→•m3(B3→
. . .→•mn(Bn → C) . . .))) for some n, m0, m1, m2, . . ., mn, B1, B2, . . ., Bn and C such that

(a) C /' •kX for every k and X ∈ V ,
(b) C /' •k(D→ E) for every k, D and E, and
(c) C /' >.

Proof. First, we show the “if” part. Suppose that A ' •m1(B1→•m2(B2→•m3(B3→ . . .→•mn(Bn→C) . . .)))
and (a) through (c) hold. With the help of Proposition 12.12,

tlV (A) = tlV (•m1(B1 →•m2(B2 →•m3(B3 → . . .→•mn(Bn → C) . . .))))
= 1 + tlV (•m2(B2 →•m3(B3 → . . .→•mn(Bn → C) . . .)))
...
= n + tlV (C)
= n (by Proposition 12.19 and (a) through (c))

For the “only if” part, suppose that tlV (A) = n; that is, tlV (Ac) = n by Proposition 12.13. The proof proceeds
by induction on n, and by cases of the form of Ac. If Ac = •kP for some k and P , then trivial since tlV (Ac) = 0
in this case. If Ac = •kX for some k and X , then straightforward because we get tlV (Ac) = 0 and X /∈ V from
tlV (•kX) = n < ∞. If Ac = •k(A1 → A2) for some A1 and A2, then also straightforward from the induction
hypothesis because tlV (Ac) = tlV (A2) + 1. The case Ac = > is impossible because tlV (>) = ∞. ut

Now we show the main results of this subsection, which is stated as the following theorem.

Theorem 12.21. Let V be a set of type variables, and A a type expression such that A ∈ TFV. If Γ ` M : A is
derivable, then M has a head normal form.

Proof. Considering the same realizability interpretation <V, ·, σ, [[]]V, K, θ> of λ•µ and ρ as in the proof of The-
orem 12.7, we get M ∈ I(A)ξ

k for every ξ and k by Theorem 10.4. Since ξ can be any type environment, it suffices
to show that M has a head normal form whenever there exists some ξ and A such that

(a) A ∈ TFV,
(b) ξ(X)k = K0 for every k and X /∈ V , and
(c) M ∈ I(A)ξ

k for every k.

The proof proceeds by induction on h(A), and by cases of the form of A. Suppose (a) through (c).

Case: A = P . M obviously has a head normal form by Proposition 12.6, because I(A)ξ
k = θ(P)k = K0 ∪

{ M | M =
β

c for some c ∈ Const }.

Case: A = X . In this case, I(A)ξ
k = ξ(X)k = K0 by (a) and (b). M therefore has a head normal form by

Proposition 12.6.

Case: A = •B. In this case, h(B) < h(A) and B ∈ TFV by (a). Therefore, M has a head normal form by the
induction hypothesis, because M ∈ I(•B)ξ

k+1 = I(B)ξ
k for every k.

Case: A = B → C. In this case, h(C) < h(A) and C ∈ TFV by (a). Let y be a fresh individual variable. Since
M ∈ I(B → C)ξ

k and y ∈ K0 ⊂ I(B)ξ
k for every k, we get My ∈ I(C)ξ

k for every k. Therefore, My has a head
normal form, say L, by the induction hypothesis. There are two possible cases: for some K, (1) M ∗→

β
K ∈ K0 and

L = Ky ∈ K0, or (2) M ∗→
β

λy. K and K ∗→
β

L. In either case, M obviously has a head normal form.

Case: A = µY.B. In this case, h(B) < h(A) and B ∈ TFV ∪{Y } by (a). By Definition 9.6 and Proposition 9.7,
we get I(µY.B)ξ

k = I(B[µY.B/Y])ξ
k = I(B)ξ′

k , where ξ′ = ξ[I(µY.B)ξ/Y]. Note that (a′) B ∈ TFV ∪{Y }, (b′)
ξ′(X)k = K0 for every k and X /∈ V ∪ {Y }, and (c′) M ∈ I(B)ξ′

k for every k. Therefore, M has a head normal
form by the induction hypothesis. ut

35

12.3 Positively and negatively finite types

Definition 12.22 (Maximal λ-terms). A λ-term M is maximal if and only if the Böhm tree of M has no occurrence
of ⊥, which represents non-head normalizable λ-terms.

Note that the maximality of λ-terms is closed under =
β

.

Definition 12.23 (Positively and negatively finite types). A type expression A is positively (negatively) finite if
and only if C is tail finite whenever A ' B[C/X] for some B and X such that X ∈ ETV +(B) (X ∈ ETV −(B))
and X /∈ ETV −(B) (X /∈ ETV +(B)).

Note that every positively finite type expression is tail finite.

Definition 12.24. We define subsets PF and NF of TExp as follows:

PF ::= TConst | TVar
| •PF | NF→ PF
| µX.A (µX.A ∈ TF, A ∈ PF, and (a) X /∈ ETV −(A) or (b) A ∈ NF).

NF ::= TConst | TVar
| •NF | PF→ NF
| A→B (A, B ∈ TExp, and B is a >-variant)
| µX.A (µX.A ∈ TExp, A ∈ NF, and (a) X /∈ ETV −(A) or (b) µX.A ∈ PF).

We can easily check that PF and NF are closed under α-conversion of type expressions. Note that > ∈ NF.

Proposition 12.25. Let A be a type expression, and X a type variable. If X ∈ ETV ±(A), then there exist some A′

and X ′ such that A ' A′[X/X ′], X ′ ∈ ETV ±(A′) and X ′ /∈ ETV ∓(A′).

Proof. By Proposition 5.23 and 5.5.1, we can assume that A is canonical. Note that A /= > and dp±→(A, X) < ∞
from X ∈ ETV ±(A) by Proposition 4.13. The proof proceeds by straightforward induction on dp±→(A, X), and by
cases of the form of A. ut
Proposition 12.26. 1. If X ∈ ETV +(A), X /∈ ETV −(A) and A[B/X] ∈ PF (NF), then B ∈ PF (NF).

2. If X ∈ ETV −(A), X /∈ ETV +(A) and A[B/X] ∈ PF (NF), then B ∈ NF (PF).

Proof. By simultaneous induction on h(A). Use Proposition 4.9.2 to show the part 2 in case that A = C → D
for some C and D. Note that X ∈ ETV ±(C → D) implies that D is not a >-variant; and if A = µY.C for
some Y and D, then Y /∈ ETV −(C) since ETV +(A) /= ETV −(A) by X ∈ ETV +(A) and X /∈ ETV −(A)
(X ∈ ETV −(A) and X /∈ ETV +(A)).

Proposition 12.27. PF ⊂ TF.

Proof. We can show that A ∈ PF implies A ∈ TF for every A by straightforward induction on h(A).

Lemma 12.28. Suppose that

(a) A ∈ TFV ,
(b) V ∩ FTV (B) = {}, and
(c) X /∈ ETV +(A) or B ∈ TF.

Then A[B/X] ∈ TFV .

Proof. If X /∈ ETV +(A), then A ∈ TFV ∪{X} by (a) and Proposition 12.16.2; and therefore, A[B/X] ∈ TFV

by Proposition 12.17.1. On the other hand, if X ∈ ETV +(A), then B ∈ TF by (c); that is, B ∈ TFV by (b) and
Proposition 12.16.2. Hence, A[B/X] ∈ TFV by Proposition 12.17.2. ut
Proposition 12.29. Suppose that

(a) A ∈ PF (NF),

36

(b) if X ∈ ETV +(A) then B ∈ PF (NF), and
(c) if X ∈ ETV −(A) then B ∈ NF (PF).

Then A[B/X] ∈ PF (NF).

Proof. By induction on h(A), and by cases of the form of A. Use Proposition 4.9.1 if A = C →D for some C and
D. The most interesting case is when A = µY.C for some Y and C. In this case, suppose that (a) through (c) hold.
We can assume that Y /∈ FTV (B) ∪ {X} without loss of generality; that is, A[B/X] = µY.C[B/X]. By (a) and
Definition 12.24, we have:

µY.C ∈ TF (TExp) (27)
C ∈ PF (NF), and (28)
Y /∈ ETV −(C) or C ∈ NF (µY.C ∈ PF). (29)

Besides, since X ∈ ETV ±(C) implies X ∈ ETV ±(A), from (b)and (c),

(b′) if X ∈ ETV +(C) then B ∈ PF (NF), and
(c′) if X ∈ ETV −(C) then B ∈ NF (PF).

By Definition 12.24, it suffices to show that:

µY.C[B/X] ∈ TF (TExp) (30)
C[B/X] ∈ PF (NF), and (31)
Y /∈ ETV −(C[B/X]) or C[B/X] ∈ NF (µY.C[B/X] ∈ PF). (32)

First, we get C ∈ TF{Y } (C is proper in Y) from (27); and therefore, C[B/X] ∈ TF{Y } (C[B/X] is proper in
Y) by (b′) and Lemma 12.28 (Proposition 4.7.2). Thus we get (30). Second, we get (31) from (28), (b′) and (c′)
by the induction hypothesis. Finally, to show (32), suppose that Y ∈ ETV −(C[B/X]). Then Y ∈ ETV −(C) by
Proposition 4.10.2 since Y /∈ FTV (B); and therefore, X ∈ ETV ±(C) implies X ∈ ETV ∓(A). Hence, from (b)
and (c), we get:

(b′′) if X ∈ ETV +(C) then B ∈ NF (PF), and
(c′′) if X ∈ ETV −(C) then B ∈ PF (NF).

On the other hand, by Y ∈ ETV −(C) and (29), we get C ∈ NF (µY.C ∈ PF; and therefore C ∈ PF by
Definition 12.24). Hence, C[B/X] ∈ NF (PF) by the induction hypothesis. (Note that C[B/X] ∈ PF implies
µY.C[B/X] ∈ PF because C[B/X] ∈ NF is already established as (31), and because we can get µY.C[B/X] ∈ TF
from µY.C ∈ PF ⊂ TF and (b′′) by Lemma 12.28.) We thus establish (32). ut
Lemma 12.30. If A ∈ PF (NF), then A is positively (negatively) finite.

Proof. It suffices to derive C ∈ TF from the following assumptions:

(a) A ∈ PF (NF),
(b) A ' B[C/X],
(c) X ∈ ETV +(B) (ETV −(B)), and
(d) X /∈ ETV −(B) (ETV +(B)).

By induction on the lexicographic ordering of <dp+
• (B, X), r(A)> (<dp−• (B, X), r(A)>), and by cases of the

form of A. Suppose that (a) through (d) hold. We can assume that B is canonical because B[C/X] ' Bc[C/X],
ETV ±(B) = ETV ±(Bc) and dp±• (B) = dp±• (Bc) by Propositions 5.3, 5.23, 5.5.1 and 5.4. If B = X , then X /∈
ETV −(B). In this case, we get C ∈ TF by Propositions 12.18 and 12.13, because C = B[C/X] ' A ∈ PF ⊂ TF
by (a) and Proposition 12.27. Hence, we also assume that B /= X .

Case: A = P for some P , or A = Y for some Y . This is impossible from the condition (c) and the assumption
B /= X .

Case: A = •D for some D. Since B /= X , only possible case is when B = •D′ for some D′ such that
D ' D′[C/X]. We get D ∈ PF (NF) from (a); X ∈ ETV +(D′) (ETV −(D′)) from (c); and X /∈ ETV −(D′)
(ETV +(D′)) from (d). Since dp±• (B, X) = dp±• (D′, X) + 1, we get C ∈ TF by the induction hypothesis.

37

Case: A = D → E for some D and E. Since B /= X , only possible case is when B = D′→ E′ for some D′ and
E′ such that E ' E′[C/X], and D ' D′[C/X] or E ' > by Propositions 5.15 and 5.14.2. If E is a >-variant,
i.e., E ' >, then A /∈ PF and E′[C/X] is also a >-variant; and so is E′ or X ∈ ETV +(E′) by Proposition 4.9.2.
However, this is impossible by (a), or (c) and (d). (Note that if E′ is a >-variant, then X /∈ ETV −(D′ → E′).)
Therefore, E is not a >-variant, i.e., E /' >. We thus get:

– D ∈ NF (PF), D ' D′[C/X] and X /∈ ETV +(D′) (ETV −(D′)).
– E ∈ PF (NF), E ' E′[C/X] and X /∈ ETV −(E′) (ETV +(E′)).

On the other hand, we can get dp+
• (B, X) < ∞ (dp−• (B, X) < ∞) from (c) by Proposition 4.13.1; and since

dp±• (B, X) = min(dp∓• (D′, X), dp±• (E′, X)),

– dp+
• (B, X) = dp−• (D′, X) (dp−• (B, X) = dp+

• (D′, X)) and X ∈ ETV −(D′) (ETV +(D′)), or
– dp+

• (B, X) = dp+
• (E′, X) (dp−• (B, X) = dp−• (E′, X)) and X ∈ ETV +(E′) (ETV −(E′)).

Note also that r(D), r(E) < r(A). Therefore, we get C ∈ TF by the induction hypothesis in either case.

Case: A = µY.D for some Y and D. In this case, from (a),

µY.D ∈ TF (TExp)
D ∈ PF (NF), and (33)
Y /∈ ETV −(D) or D ∈ NF (µY.D ∈ PF). (34)

It should be noted that (a), (33) and (34) imply that:

if Y ∈ ETV −(D) then µY.D ∈ NF (PF). (35)

We now get D[µY.D/Y] ∈ PF (NF) from (33), (a) and (35) by Proposition 12.29. Therefore, C ∈ TF by the
induction hypothesis, since r(D[µY.D/Y]) < r(A) and D[µY.D/Y] ' µY.D = A ' B[C/X] from (b). ut

Lemma 12.31. If A is positively (negatively) finite, then A ∈ PF (NF).

Proof. By induction on h(A), and by cases of the form of A. Suppose that A is positively (negatively) finite, i.e.:

if A ' B[C/X], X ∈ ETV +(B) (ETV −(B)), and X /∈ ETV −(B) (ETV +(B)), then C ∈ TF. (36)

Case: A = P for some P , or A = Y for some Y . Obviously, A ∈ PF (NF) by Definition 12.24.

Case: A = •D for some D. Suppose that D ' B′[C/X] and X ∈ ETV +(B′) (ETV −(B′)) hold for some X and
B′. Since A ' (•B′)[C/X] and X ∈ ETV +(•B′) (ETV −(•B′)), we get C ∈ TF by (36). Therefore, D ∈ PF
(NF) by the induction hypothesis; and hence A ∈ PF (NF) by Definition 12.24.

Case: A = D → E for some D and E. First, suppose that D ' B′[C/X], X ∈ ETV −(B′) (ETV +(B′))
and X /∈ ETV +(B′) (ETV −(B′)) hold for some X and B′. Since this means that D ' B′[X ′/X][C/X ′],
X ′ ∈ ETV −(B′[X ′/X]) (ETV +(B′[X ′/X])) and X ′ /∈ ETV +(B′[X ′/X]) (ETV −(B′[X ′/X])) for a fresh
type variable X ′, we can assume that X /∈ FTV (E) ∪ FTV (C) without loss of generality. We thus get C ∈ TF
by (36), since A ' (B′ → E)[C/X], X ∈ ETV +(B′ → E) (ETV −(B′ → E)) and X /∈ ETV −(B′ → E)
(ETV +(B′→E)); and therefore, D ∈ NF (PF) by the induction hypothesis. We similarly get E ∈ PF (NF). Hence
A ∈ PF (NF) by Definition 12.24.

Case: A = µY.D for some Y and D. If A ' >, then obviously A ∈ NF; and A ' X[>/X], which means that A
is not positively finite. Therefore, we now assume that A /' >, that is, A is not a >-variant. It suffices to show the
following:

µY.D ∈ TF (TExp), (37)
D ∈ PF (NF), and (38)
Y /∈ ETV −(D) or D ∈ NF (µY.D ∈ PF). (39)

38

First, if A is positively finite, then we get µY.D ∈ TF from (36) since A ' X[µY.D/X]. Second, to show (38),
suppose that the following hold for some X and B′:

D ' B′[C/X] (40)
X ∈ ETV +(B′) (ETV −(B′)), and (41)
X /∈ ETV −(B′) (ETV +(B′)). (42)

We can assume that X /∈ FTV (A) ∪ {Y } without loss of generality. Therefore, we get A ' µY.B′[C/X] '
B′[C/X][µY.B′[C/X]/Y] ' B′[C/X][A/Y] = B′[C[A/Y]/X, A/Y] = B′[A/Y][C[A/Y]/X] from (40)
by Proposition 5.8.1, Proposition 5.3 and ('-fix); and X ∈ ETV +(B′[A/Y]) (ETV −(B′[A/Y])) from (41) by
Proposition 4.10.1 since A is not a>-variant. Note also that we can get X /∈ ETV −(B′[A/Y]) (ETV +(B′[A/Y]))
from (42) by Proposition 4.10.2 since X /∈ FTV (A). Therefore, we get C[A/Y] ∈ TF by (36); and hence C ∈ TF
by Proposition 12.17.3. We now get D ∈ PF (NF) by the induction hypothesis. Finally, to establish (39), suppose
that Y ∈ ETV −(D), i.e., by Proposition 12.25, there exist some D′ and Y ′ such that:

D ' D′[Y/Y ′], (43)
Y ′ ∈ ETV −(D′), and (44)
Y ′ /∈ ETV +(D′). (45)

We can assume that Y ′ /∈ FTV (D) ∪ {Y } without loss of generality. If D is negatively (positively) finite, then we
get D ∈ NF (PF) by the induction hypothesis. (Note that if A is negatively finite, then D ∈ PF implies µY.D ∈ PF,
because D ∈ NF is already established as (38), and because we can get µY.D ∈ TF by (36) from (44), (45) and
A = µY.D ' µY.D′[Y/Y ′] ' µY.µY ′.D′ ' D′[A/Y ′, A/Y] ' D′[A/Y][A/Y ′].) That is, to establish (39), it
suffices to show that D is negatively (positively) finite. So suppose that there exist some B′′ and X such that:

D ' B′′[C/X], (46)
X ∈ ETV −(B′′) (ETV +(B′′)), and (47)
X /∈ ETV +(B′′) (ETV −(B′′)). (48)

We can assume that X /∈ FTV (A) ∪ FTV (D′) ∪ {Y, Y ′}.

A ' µY.D′[Y/Y ′] (by (43) and Proposition 5.8.1)
' µY.D′[D′[Y/Y ′]/Y ′] (by Proposition 5.8.3)
' µY.D′[D/Y ′] (by (43) and Proposition 5.3)
' µY.D′[B′′[C/X]/Y ′] (by (46) and Proposition 5.3)
' D′[B′′[C/X]/Y ′][µY.D′[B′′[C/X]/Y ′]/Y] (by ('-fix))
' D′[B′′[C/X]/Y ′][A/Y] (by Proposition 5.3)
= D′[B′′[C/X][A/Y]/Y ′, A/Y] (since Y /= Y ′)
= D′[B′′[A/Y][C[A/Y]/X]/Y ′, A/Y] (since X /∈ FTV (A) ∪ {Y })
= D′[B′′[A/Y]/Y ′, A/Y][C[A/Y]/X] (since X /∈ FTV (A) ∪ FTV (D′))
= D′[B′′/Y ′][A/Y][C[A/Y]/X] (since Y /= Y ′)

We get X ∈ ETV +(D′[B′′/Y ′]) (ETV −(D′[B′′/Y ′])) from (44) and (47) by Proposition 4.11.2; and hence,

X ∈ ETV +(D′[B′′/Y ′][A/Y]) (X ∈ ETV −(D′[B′′/Y ′][A/Y]))

by Proposition 4.10.1 since Y /= X and A is not a >-variant. Similarly, we get X /∈ ETV −(D′[B′′/Y ′])
(ETV +(D′[B′′/Y ′])) from (45), (48) and X /∈ FTV (D′) by Proposition 4.11.3; and

X /∈ ETV −(D′[B′′/Y ′][A/Y]) (X /∈ ETV +(D′[B′′/Y ′][A/Y]))

by Proposition 4.10.2 since X /∈ FTV (A). Hence, C[A/Y] ∈ TF by (36); and C ∈ TF by Proposition 12.17.3. We
thus get the fact that D is negatively (positively) finite, and (39) is now established. ut

39

Proposition 12.32. A is positively (negatively) finite if and only if A ∈ PF (NF).

Proof. Straightforward from Lemmas 12.30 and 12.31. ut
Lemma 12.33. Let A and B be type expressions such that A ¹ B.

1. If B is positively finite, then so is A.
2. If A is negatively finite, then so is B.

Proof. It suffices to show that for every X , A, B, C and D, D is tail finite provided the following:

(a) dp+
→(C, X) < ∞, dp−→(C, X) = ∞, C[D/X] ¹ B and B is positively finite, or

(b) dp−→(C, X) < ∞, dp+
→(C, X) = ∞, A ¹ C[D/X] and A is negatively finite.

The proof proceeds by induction on dp±→(C, X). Suppose that (a) or (b) holds. We can assume that C is canonical
because ETV ±(C) = ETV ±(Cc), C[D/X] ' Cc[D/X] and dp±→(C, X) = dp±→(Cc, X) by Propositions 5.23,
5.5.1, 5.3 and 5.4.

Case: C = > or C = •nP for some n and P . This is impossible because X ∈ FTV (C) from (a) or (b) by
Proposition 4.13.

Case: C = •nY for some Y . Note that dp−→(C, X) = ∞ in this case. If (a) holds, then Y = X since dp+
→(C, X) <

∞. Therefore, D is tail finite by Proposition 12.13, because tl{}(D) = tl{}(•nD) = tl{}(C[D/X]) ≤ tl{}(B) by
Propositions 12.12 and 12.13.

Case: C = •n(E→F) for some E and F . In this case, C[D/X] = •n(E→F)[D/X] = •n(E[D/X]→F [D/X]).
Note that F /' > since dp+

→(C, X) < ∞ or dp−→(C, X) < ∞ holds. If (a) holds, then B /' > since B is positively
finite; and we get:

– dp−→(E, X) < dp+
→(C, X) or dp+

→(F, X) < dp+
→(C, X),

– dp+
→(E, X) = dp−→(F, X) = ∞, and

– •n(E[D/X]→ F [D/X]) ¹ B,

because dp±→(C, X) = dp±→(•n(E→F)) = min(dp∓→(E, X), dp±→(F, X))+1 by Definition 4.12. Since B /' >,
by Proposition 6.9, there exist some m, k, l, G and H such that:

(a1) B ' •m(G→H),
(a2) n+k ≤ m,
(a3) •kG ¹ •lE[D/X] and •lF [D/X] ¹ •kH .

Since B is positively finite, G and H are negatively and positively finite, respectively; and so are •kG and •kH .
Therefore, D is tail finite from (a3) by the induction hypothesis because dp+

→(•lE, X) = dp+
→(E, X) = ∞,

dp−→(•lF, X) = dp−→(F, X) = ∞, and dp−→(•lE, X) = dp−→(E, X) < dp+
→(C, X) or dp+

→(•lF, X) = dp+
→(F,

X) < dp+
→(C, X). On the other hand, if (b) holds, then we similarly get:

– dp+
→(E, X) < dp−→(C, X) or dp−→(F, X) < dp−→(C, X),

– dp−→(E, X) = dp+
→(F, X) = ∞, and

– A ¹ •n(E[D/X]→ F [D/X]).

We get X /∈ ETV +(F) from dp+
→(F, X) = ∞; and hence, F [D/X] /' > from F /' > by Proposition 4.9.

Therefore, by Proposition 6.9, there exist some m, k, l, G and H such that:

(b1) A ' •m(G→H),
(b2) m+k ≤ n,
(b3) •lH ¹ •kF [D/X], and
(b4) •kE[D/X] ¹ •lG.

Since A is negatively finite, G and H are positively and negatively finite, respectively; and so are •lG and •lH .
Therefore, D is tail finite from (b3) and (b4) by the induction hypothesis because dp−→(•kE, X) = dp−→(E, X) =
∞, dp+

→(•kF, X) = dp+
→(F, X) = ∞, and dp+

→(•kE, X) = dp+
→(E, X) < dp−→(C, X) or dp−→(•kF, X) =

dp−→(F, X) < dp−→(C, X).
ut

Lemma 12.34. Let n be a non-negative integer, and x1, x2, . . . , xn distinct type variables. If Γ ` λx1. λx2. . . .
λxn. M : A is derivable, then so is Γ ∪ {x1 : B1, x2 : B2, . . . , xn : Bn} ` M : C for some B1, B2, . . ., Bn

and C such that B1 →B2 → . . .→Bn → C ¹ A.

Proof. By induction on n. It is trivial if n = 0. If n > 0, then there are only two possible cases.

40

Case 1. The derivation ends as follows:

Γ ` λx1. λx2. . . . λxn. M : >
(>)

... 0 or more (¹)’s
Γ ` λx1. λx2. . . . λxn. M : A

In this case, > ¹ A; and therefore, A ' > by Proposition 6.5. We can derive Γ ∪ {x1 : B1, x2 : B2, . . . , xn :
Bn} ` M : > by the (>)-rule, and B1 →B2 → . . .→Bn →> ¹ > by (¹->) for any B1, B2, . . ., Bn.

Case 2. There exist some B1 and D such that B1 →D ¹ A and the derivation ends with:

...
Γ ∪ {x1 : B1} ` λx2. . . . λxn. M : D

Γ ` λx1. λx2. . . . λxn. M : B1 →D
(→I)

... 0 or more (¹)’s
Γ ` λx1. λx2. . . . λxn. M : A

In this case, by the induction hypothesis, Γ ∪ {x1 : B1, x2 : B2, . . . , xn : Bn} ` M : C is derivable for some
B2, . . ., Bn and C such that B2→ . . .→Bn→C ¹ D. Therefore, B1→B2→ . . .→Bn→C ¹ B1→D ¹ A. ut

Lemma 12.35. Suppose that A /' >. If Γ ` xN1N2 . . . Nn : A is derivable, then Γ (x) ' •m1(B1→•m2(B2→
. . .→•mn(Bn → C) . . .)) for some m1, m2, . . ., mn, B1, B2, . . ., Bn and C such that

1. •m1+m2+...+mnC ¹ A, and
2. for every i (0 ≤ i ≤ n), there exists some m′

i such that Γ ` Ni •m′
iBi is derivable.

Proof. By induction on n. If n = 0, then since A /' >, the derivation ends with:

Γ ` x : Γ (x)
(var)

... 0 or more (¹)’s
Γ ` x : A

Therefore, we get C ¹ A by taking C as C = Γ (x). If n > 0, then for some m′, D and E, the derivation ends with:

...
Γ ` xN1N2 . . . Nn−1 : •m′

(D→ E)

...
Γ ` Nn : •m′

D

Γ ` xN1N2 . . . Nn : •m′
E

(→E)

... 0 or more (¹)’s
Γ ` xN1N2 . . . Nn : A

Note that •m′
E ¹ A, and E /' > since A /' >. By induction hypothesis, Γ (x) ' •m1(B1 → •m2(B2 → . . . →

•mn−1(Bn−1 → C ′) . . .)) for some m1, m2, . . ., mn−1, B1, B2, . . ., Bn−1 and C ′ such that:

– •m1+m2+...+mn−1C ′ ¹ •m′
(D→ E), and

– for every i (0 ≤ i ≤ n−1), there exists some m′
i such that Γ ` Ni •m′

iBi is derivable.

Therefore, since E /' >, by Proposition 6.9, there exist some m′′, k, l, Bn and C such that:

– •m1+m2+...+mn−1C ′ ' •m′′
(Bn → C),

– m′′ + k ≤ m′, and
– •kD ¹ •lBn and •lC ¹ •kE.

41

We get C ′ ¹ •mn(Bn→C) by Propositions 5.13 and 5.15, where mn = m′′−m1−m2− . . .−mn−1; and therefore,
Γ (x) ' •m1(B1→•m2(B2→ . . .→•mn−1(Bn−1→•mn(Bn→C) . . .)). On the other hand, •m1+m2+...+mn−1+mn

C = •m′′
C ¹ •m′−kC ¹ •m′−k+lC ¹ •m′

E ¹ A and •m′
D ¹ •m′−k+lBn. We get the derivation of Γ ` Nn :

•m′−k+lBn from the one of Γ ` Nn : •m′
D by (¹). ut

Theorem 12.36. Let Γ ` M : A be a derivable judgment. If A is positively finite and Γ (x) is negatively finite for
every x ∈ Dom(Γ), then M is maximal.

Proof. We show that for every n, every node of the Böhm-tree of M at the level n is head normalizable, by induction
on n. Since A is positively finite, M is head normalizable by Theorem 12.21, that is

M ∗→
β

λx1. λx2. . . . λxm. yN1 N2 . . . Nl

for some x1, x2, . . ., xm, y, N1, N2, . . ., Nl. By Theorem 8.5, Γ ` λx1. λx2. . . . λxm. yN1 N2 . . . Nl : A is
also derivable; and therefore, by Lemma 12.34, Γ ∪ {x1 : B1, x2 : B2, . . . , xm : Bm} ` yN1 N2 . . . Nl : C is
derivable for some B1, B2, . . ., Bm and C such that:

B1 →B2 → . . .→Bm → C ¹ A.

Note that since A is positively finite, so is C, i.e., C /' >, and B1, B2, . . ., Bm are negatively finite by Propo-
sition 12.33. Let Γ ′ = Γ ∪ {x1 : B1, x2 : B2, . . . , xm : Bm}. Since C /' >, by Lemma 12.35, Γ ′(y) '
•k1(D1 →•k2(D2 → . . .→•kl(Dl → E) . . .)) for some k1, k2, . . ., kl, D1, D2, . . ., Dl and E such that:

– •k1+k2+...+klE ¹ C, and
– for every i (0 ≤ i ≤ l), Γ ′ ` Ni : •k′iDi is derivable for some k′i.

Since C is positively finite, so is E, i.e., E /' >; and therefore, Di is positively finite for every i (0 ≤ i ≤ l) because
Γ ′(z) is negatively finite for every z ∈ Dom(Γ). Therefore, by the induction hypothesis, for every i (0 ≤ i ≤ l),
every node of the Böhm-tree of Ni at the level less than n is head normalizable; that is, so is one of M at the level
less than or equal to n. ut

13 λ•µ as a logic

We can regard the typing system λ•µ as a logical system by ignoring left hand sides of : from typing judgments. In
this section, we discuss the some properties of λ•µ as such a logical system.

13.1 Redundancy of the (•)-rule

In this subsection, we show that the rule (•) is redundant when we regard λ•µ as a logic.

Definition 13.1. Let A be a type expression. We define A by induction on r(A) as follows:

P = P, X = X,

•A = A, A→B =
{

A→> (B is a >-variant)
A→A→B (otherwise),

µX.A = A[µX.A/X].

Proposition 13.2. If A is proper in X , then A[B/X] = A[B/X].

Proof. By straightforward induction on h(A). ut
Proposition 13.3. If A ' B, then A ' B.

Proof. By straightforward induction on the derivation of A ' B. Use Proposition 13.2 for the case ('-fix) and
('-uniq). ut
Proposition 13.4. Let A, B, C1, C2, . . ., Cn D1, D2, . . ., Dn be type expressions. Let X1, X2, . . ., Xn Y1, Y2, . . .,
Yn be distinct type variables. If {X1 ¹ Y1, X2 ¹ Y2, . . . , Xn ¹ Yn} ` A ¹ B is derivable, and Ci ¹ Di for
every i (0 ≤ i ≤ n), then ` M : (A→B)σ is derivable without using the (•)-rule for some λ-term M , where
σ = [C1/X1, D1/Y1, C2/X2, D2/Y2, . . . , Cn/Xn, Dn/Yn].

Proof. By induction on the derivation of {X1 ¹ Y1, X2 ¹ Y2, . . . , Xn ¹ Yn} ` A ¹ B , and by cases of the last
rule applied in the derivation. First note that Aσ ¹ Bσ by Proposition 6.4.

42

Cases: (¹-assump), (¹-reflex) and (¹-•). In these cases, we can take λx. λy. y for M , because A ¹ B. Use
Proposition 13.3 in the case (¹-reflex).

Case: (¹->). In this case, B = >; therefore, A→Bσ = (A→>)σ = Aσ→>. We can derive ` λx.x : Aσ→>
as follows:

x : Aσ ` x : >
(>)

` λx. x : Aσ→>
(→ I)

Case: (¹-trans). The derivation ends with:
...

γ1 ` A ¹ E

...
γ2 ` E ¹ B

γ1 ∪ γ2 ` A ¹ B
(¹-trans)

for some E, γ1 and γ2 such that γ = γ1 ∪ γ2. We can assume that γ1 = γ2 = γ by Proposition 6.3.3. By the
induction hypothesis, we have derivations of ` K : Aσ → Aσ → Eσ and ` L : Eσ → Eσ → Bσ for some K
and L. Therefore, we can derive ` λx. λy. Lx(Kx y) : Aσ →Aσ→Bσ . Note that Aσ ¹ Eσ.

Case: (¹-→). The derivation ends with:
...

γ1 ` G ¹ E

...
γ2 ` F ¹ H

γ1 ∪ γ2 ` E → F ¹ G→H
(¹-→)

for some E, F , G, H , γ1 and γ2 such that A = E→F , B = G→H , and γ = γ1 ∪ γ2. That is, Aσ→Aσ→Bσ =
(Eσ→Fσ)→(Eσ→Eσ→Fσ)→Gσ→Gσ→Hσ. We assume that γ1 = γ2 = γ by Proposition 6.3.3, again. By the
induction hypothesis, we have derivations of ` K : Gσ→Gσ→Eσ and ` L : Fσ→Fσ→Hσ for some K and L.
Therefore, we can derive ` λf.λg.λx.λy.L(f x) (gx(Kxy)) : (Eσ→Fσ)→(Eσ→Eσ→Fσ)→Gσ→Gσ→Hσ .
Note that Gσ ¹ Eσ.

Case: (¹-approx). In this case, B = •A. Hence, Aσ → Aσ → Bσ = Aσ → Aσ → Aσ. Therefore, we can take
λx. λy. x for M .

Case: (¹-→•). That is, A = E → F and B = •E → •F for some E and F . We can take λf. λg. λx. λy. f y for
M , because Aσ→Aσ→Bσ = (Eσ → Fσ)→ (Eσ → Eσ → Fσ)→•Eσ → Eσ → Fσ.

Case: (¹-•→). A = •E→•F and B = •(E→F) for some E and F . We can take λf.λg.λx.gxx for M , because
Aσ→Aσ→Bσ = (•Eσ →•Fσ)→ (•Eσ → Eσ → Fσ)→ Eσ → Fσ.

Case: (¹-µ). The derivation ends with:
...

γ ∪ {X ¹ Y } ` A′ ¹ B′

γ ` µX.A′ ¹ µY.B′ (¹-µ)

for some X , Y , A′ and B′ such that X /∈ FTV (B′), Y /∈ FTV (A′), A = µX.A′ and B = µY.B′. We get
(µX.A′)σ ¹ (µY.B′)σ by Proposition 6.4. Therefore, by the induction hypothesis, we have a derivation of ` M :
A′σ′→A′σ′→B′σ′ for some M , where σ′ = [(µX.A)σ/X, (µY.B)σ/Y, C1/X1, D1/Y1, C2/X2, D2/Y2, . . . ,

Cn/Xn, Dn/Yn]. Since obviously FTV (A′) = FTV (A′) and FTV (B′) = FTV (B′), we get X /∈ FTV (B′)
and Y /∈ FTV (A′). Hence,

A′σ′ = A′[µX.A′/X]σ ' (µX.A′)σ = Aσ

A′σ′ = A′[µX.A′/X]σ ' µX.A′σ = Aσ

B′σ′ = B′[µY.B′/Y]σ ' µY.B′σ = Bσ

That is, A′σ′→A′σ′→B′σ′ ' Aσ→Aσ →Bσ. Therefore, ` M : Aσ→Aσ→Bσ is also derivable. ut

43

Proposition 13.5. Let x1, y1, x2, y2, . . . , xn, yn be distinct individual variables. If {x1 : A1, x2 : A2 . . . , xn :
An} ` M : B is derivable, then we can derive

1. {x1 : A1, x2 : A2, . . . , xn : An} ` K : B , and
2. {x1 : A1, y1 : A1, x2 : A2, y2 : A2, . . . , xn : An, yn : An} ` L : B

without using the (•)-rule for some λ-terms K and L

Proof. Let Π be the derivation of {x1 : A1, x2 : A2 . . . , xn : An} ` M : B . Let l(Π) be the number of
occurrences of the (•)-rule in the derivation Π , and c(Π) the number of occurrences of any typing rule in Π . We
prove the conjecture by induction on the lexicographic ordering of <l(Π), c(Π)> and by cases of the last rule
applied in Π . Let Γ = {x1 : A1, x2 : A2, . . . , xn : An} and Γ ′ = {x1 : A1, y1 : A1, x2 : A2, y2 : A2, . . . , xn :
An, yn : An}. Note that if B is a >-variant, then so is B; and hence, Γ ` K : B and Γ ′ ` L : B are derivable
for any K and L. We therefore assume that B is not a >-variant, i.e., B /' > in the sequel.

Case: (var). Obvious because B = Ai for some i (0 ≤ i ≤ n).

Case: (const). Obvious because B = B.

Case: (>). Impossible from the assumption that B /' >.

Case: (•). The derivation ends with:

...
{x1 : •A1, x2 : •A2, . . . , xn : •An} ` M : •B
{x1 : A1, x2 : A2, . . . , xn : An} ` M : B

(•)

By the induction hypothesis, {x1 : •A1, y1 : A1, x2 : •A2, y2 : A2, . . . , xn : •An, yn : An} ` L : B is
derivable without using the (•)-rule for some L. Therefore, there is some derivation Π ′ of Γ ` L[x1/y1, x2/y2, . . . ,
xn/yn] : B which includes no (•)-rule. On the other hand, since c(Π ′) < c(Π), by the induction hypothesis again,
Γ ′ ` L′ : B is derivable without using the (•)-rule for some L′.

Case: (¹). For some B′, the derivation ends with:

...
Γ ` M : B′

...
` B′ ¹ B

Γ ` M : B
(•)

By the induction hypothesis, Γ ` K : B′ and Γ ′ ` L : B′ are derivable without using the (•)-rule for some
K and L; and so is Γ ` K : B because B′ ¹ B. On the other hand, since B /' >, by Proposition 13.4,
` N : B′→B′→B is derivable without using the (•)-rule for some N . Hence, so is Γ ′ ` NK L : B .

Case: (→I). For some z, N , B1 and B2 such that z /= Dom(Γ), M = λz. N and B = B1 → B2, the derivation
ends with:

...
Γ ∪ {z : B1} ` N : B2

Γ ` λz. N : B1 →B2

(→I)

We can assume that z /∈ Dom(Γ ′). Let z′ be a fresh individual variable. By the induction hypothesis, Γ ∪ {z :
B1} ` K : B2 and Γ ′ ∪ {z : B1, z′ : B1} ` L : B2 are derivable without using the (•)-rule for some K
and L; and so are Γ ` λz. K : B1 → B2 and Γ ′ ` λz. λz′. L : B1 → B1 → B2 . Note that if B2 /' >, then
B = B1→B1→B2; and otherwise, B = B1→>. Therefore, Γ ′ ` λz. λz′. L : B is derivable without using the
(•)-rule in either case.

44

Case: (→E). For some n, M1, M2, B′ and C such that M = M1M2 and B = •nB′, the derivation ends with:

...
Γ ` M1 : •n(C →B′)

...
Γ ` M2 : •nC

Γ ` M1M2 : •nB′ (→E)

By the induction hypothesis, Γ ` K1 : •n(C → B′) , Γ ` K2 : •nC , Γ ′ ` L1 : •n(C →B′) and Γ ′ ` L2 :
•nC are derivable without using the (•)-rule for some K1, K2, L1 and L2. Therefore, so is Γ ` K1K2 : •nB′ .
If n = 0, i.e., B = B′ /' >, then we can derive Γ ′ ` L1K2 L2 : B without using the (•)-rule because
•n(C →B′) = C→C→B and •nC = C. On the other hand, if n > 0, we can derive Γ ′ ` L1L2 : •nB′ without
using the (•)-rule because •nB′ = •n−1B′, •n(C →B′) = •n−1(C →B′) and •nC = •n−1C. ut
Remark 13.6. Proposition 13.5 says that the existence of the (•)-rule does not affects type inhabitance, i.e., the (•)-
rule is redundant if we regard λ•µ as a logic ignoring left hand sides of :. However, the (•)-rule is not redundant
as a typing system. For example, let M = (λf. y(f (λz. x)) (gf)) (λh. h(λu. u)). While we can derive {x :
•X, y : •(X → Y → Z), g : •((((Y → Y) → •X) → •X) → Y)} ` M : •Z in λ•µ, we can not derive
{x : X, y : X → Y → Z, g : (((Y → Y)→•X)→•X)→ Y } ` M : Z without using the (•)-rule.

Remark 13.7. Let M be a β-normal form. If Γ ` M : A is derivable, then we can also derive it without using the
(•)-rule.

Remark 13.8. The proof of Proposition 13.5 also suggests that if we had intersection types, the (•)-rule would be
redundant even as a typing system. If we change the definition of A→B as A→B = (A∧A)→B for non->-variant
B, then we get the following:

1. If A ' B, then A ' B.
2. If A ¹ B, then A ¹ B.
3. If Γ ` M : A is derivable in λ•µ + “intersection types”, then we can also derive Γ ∧ Γ ` M : B in

it without using the (•)-rule, where Dom(Γ ∧ Γ) = Dom(Γ) and (Γ ∧ Γ)(x) = Γ (x) ∧ Γ (x) for every
x ∈ Dom(Γ).

13.2 Conservative extension of the simply typed lambda calculus

As a logic, λ•µ is a conservative extension of the simply typed lambda calculus λ→.

Definition 13.9. Syntax of λ-terms of the simply typed lambda calculus λ→ is the same as λ•µ. Type expressions
of λ→ is defined as follows:

TExpλ→ ::= TConst | TVar | TExpλ→→ TExpλ→

Typing system λ→ is defined by the following typing rules:

Γ ∪ {x : A} `λ→ x : A
(var)

Γ `λ→ c : τ(c)
(const)

Γ ∪ {x : A} `λ→ M : B

Γ `λ→ λx. M : A→B
(→ I)

Γ1 `λ→ M : A→B Γ2 `λ→ N : A

Γ1 ∪ Γ2 `λ→ MN : B
(→E)

Definition 13.10. Let A be a type expression of λ•µ, and C a type expression of λ→. We define a type expression
{{A}}C of λ→ as follows:

{{X}}C = X, {{P}}C = P,

{{•A}}C = C, {{A→B}}C = {{A}}C →{{B}}C ,

{{µX.A}}C = {{A}}C .

Note that {{A}}C = A if A has no occurrence of • or µ.

45

Proposition 13.11. Let A and B be type expressions of λ•µ, and C a type expression of λ→. If A is proper in X ,
then {{A[B/X]}}C = {{A}}C .

Proof. By straightforward induction on h(A). ut
Proposition 13.12. Let A and B be type expressions of λ•µ, and C a type expression of λ→. If A ' B, then
{{A}}C = {{B}}C .

Proof. By induction on the derivation of A ' B. Use Proposition 13.11 for the cases ('-fix) and ('-uniq). ut
Proposition 13.13. Let A and B be type expressions of λ•µ, and C a type expression of λ→ such that `λ→ M : C
is derivable for some M . Let X1, X2, . . ., Xn, Y1, Y2, . . ., Yn are distinct type variables. Let γ be a subtyping
assumption such that γ ⊂ {X1 ¹ Y1, X2 ¹ Y2, . . . , Xn ¹ Yn}. If γ ` A ¹ B is derivable, then `λ→ N :
{{A[X1/Y1, X2/Y2, . . . , Xn/Yn]}}C →{{B[X1/Y1, X2/Y2, . . . , Xn/Yn]}}C is derivable for some N .

Proof. By induction on the derivation of γ ` A ¹ B , and by cases of the last rule applied in the derivation. We
can take M as N in the cases (¹-•), (¹-approx) and (¹-•→). Let N = λx. x for (¹-→•). ut
Theorem 13.14. Let A a type expressions of λ•µ, and C a type expression of λ→ such that `λ→ M : C is
derivable for some M . If Γ ` N : A is derivable in λ•µ for some N , then so is {{Γ}}C `λ→ L : {{A}}C in λ→
for some L, where Dom({{Γ}}C) = Dom(Γ) and {{Γ}}C(x) = {{Γ (x)}}C for every x ∈ Dom(Γ).

Proof. By Proposition 13.5, we can assume that the derivation of Γ ` N : A includes no (•)-rule. We prove the
conjecture by induction on the derivation and by cases of the last rule applied in the derivation.

Use Proposition 13.13 in the case (¹).

Case: (var). Obvious because {{A}}C = {{Ai}}C for some i (0 ≤ i ≤ n).

Case: (const). Obvious because {{A}}C = A.

Case: (>). Trivial because A = > and {{A}}C = C in this case.

Case: (¹). For some B′, the derivation ends with:
...

Γ ` N : A′

...
` A′ ¹ A

Γ ` N : A
(•)

By the induction hypothesis, {{Γ}}C `λ→ L : {{A′}}C is derivable for some L. On the other hand, by Proposi-
tion 13.13, `λ→ N : {{A′}}C →{{A}}C is derivable for some N . Therefore, so is {{Γ}}C `λ→ NL : {{A}}C .

Case: (→I). For some y, K, A1 and A2 such that y /= Dom(Γ), N = λy. K and A = A1 → A2, the derivation
ends with: ...

Γ ∪ {y : A1} ` N : A2

Γ ` λy. K : A1 →A2

(→I)

By the induction hypothesis, {{Γ}}C ∪ {y : {{A1}}C} `λ→ L : {{A2}}C is derivable for some L. Therefore, so is
{{Γ}}C `λ→ λy. L : {{A}}C because {{A}}C = {{A1}}C →{{A2}}C .

Case: (→E). For some n, N1, N2, A′ and B such that N = N1N2 and A = •nA′, the derivation ends with:
...

Γ ` N1 : •n(B →A′)

...
Γ ` N2 : •nB

Γ ` N1N2 : •nA′
(→E)

By the induction hypothesis, {{Γ}}C `λ→ L1 : {{•n(B →A′)}}C and {{Γ}}C `λ→ L2 : {{•nB}}C are deriv-
able for some L1 and L2. If n = 0, i.e., A = A′, then we can derive {{Γ}}C `λ→ L1L2 : {{A}}C because
{{•n(B →A′)}}C = {{B}}C →{{A}}C and {{•nB}}C = {{B}}C . On the other hand, if n > 0, we can obviously derive
{{Γ}}C `λ→ M : {{A}}C because {{A}}C = {{•nA′}}C = C. ut

46

Corollary 13.15. Let A a type expression of λ→, i.e., A has no occurrence of • or µ, and Γ a typing context of λ→,
i.e., Γ (x) has no occurrence of • or µ for every x ∈ Dom(Γ). If Γ ` M : A is derivable in λ•µ for some M ,
then so is Γ `λ→ N : A in λ→ for some N .

Proof. Obvious from Theorem 13.14 because {{A}}X→X = A, {{Γ}}X→X = Γ , and `λ→ λx. x : X → X is
derivable in λ→. ut

14 λ•µ as a basis for logic of programs

The typing system λ•µ and its interpretation can be easily extended to cover full propositional and second-order
types. For example, we can add the following rules for product types.

Γ ` M : A Γ ` N : B

Γ ` <M, N> : A×B
(×I)

Γ ` M : •n(A×B)

Γ ` p1 M : •nA
(×E)

Γ ` M : •n(A×B)

Γ ` p2 M : •nB
(×E)

With the help of such extensions, λ•µ can be a basis for logic of a wide range of programs. In this section we give
some examples.

Streams. Streams, or infinite sequences, of data of a type X are representable by the type µY.X × •Y . Since this
type is positively finite, its elements are all maximal. We can construct recursive programs for streams with the fixed
point combinators Y; for example, a program that generates a stream of a given constant of type X as follows, where
A = µY.X × •Y .

.....
` Y : (•A→A)→A

x : X, y : •A ` x : X
(var)

x : X, y : •A ` y : •A
(var)

x : X, y : •A ` <x, y> : X × •A
(×I)

x : X, y : •A ` <x, y> : A
(')

x : X ` λy. <x, y> : •A→A
(→I)

x : X ` Y(λy. <x, y>) : A
(→E)

` λx. Y(λy. <x, y>) : X →A
(→I)

The next example shows the derivation of the program Y(λf. λx. λy. <p1 x, f y(p2 x)>), which merges two
streams. Let B = (•(A→A→A)→ (A→A→A))→ (A→A→A) and Γ = {f : •(A→A→A), x : A, y : A}.

.....
` Y : B

Γ ` x : A
(var)

Γ ` x : X×•A
(')

Γ ` p1 x : X
(×E)

Γ ` f : •(A→A→A)
(var)

Γ ` y :A
(var)

Γ ` y : •A
(¹)

Γ ` f y : •(A→A)
(→E)

Γ ` x :A
(var)

Γ ` x : X×•A
(')

Γ ` p2 x : •A
(×E)

Γ ` f y(p2 x) : •A
(→E)

Γ ` <p1 x, f y(p2 x)> :X×•A
(×I)

Γ ` <p1 x, f y(p2 x)> : A
(')

f : •(A→A→A), x : A ` λy.<p1 x, f y(p2 x)> :A→A
(→I)

f : •(A→A→A) ` λx.λy.<p1 x, f y(p2 x)> :A→A→A
(→I)

` λf.λx.λy.<p1 x, f y(p2 x)> : •(A→A→A)→A→A→A
(→I)

` Y (λf.λx.λy.<p1 x, f y(p2 x)>) :A→A→A
(→E)

More complicated programs over streams such as the prime number generator based on the sieve of Eratosthenes
are also derivable by extending our logic to a predicate logic endowed with an arithmetic (powerful enough to handle,
e.g., primitive recursive functions) for annotation, and by allowing type expressions such as •tA as well-formed type
expressions, with t being a numeric expression.

47

McCarthy’s 91-function. Provided such an extension to predicate logic, we can construct a wide range of recursive
programs with fixed point combinators assuring their termination. Consider the following recursive program, which
represents McCarthy’s 91-function:

f x ≡ if (x > 100) then x− 10 else f (f (x + 11)).

We can show that f has a type, or satisfies a specification, ∀n. nat(n)→•101 .−nnat(g(n)), where n ranges over non-
negative integers, and nat(n) represents the implementation of the non-negative integer n; .− and g are primitive
recursive functions defined in the arithmetic as:

x .− y ≡
{

x− y (if x ≥ y)
0 (otherwise)

g(x) ≡
{

x− 10 (if x > 100)
91 (otherwise)

and ∀n.A(n) is interpreted as:

I(∀n.A(n))ξ
k = { u | u ∈ I(A(n))ξ

k for all n }.

Suppose that f : • ∀n. nat(n)→•101 .−nnat(g(n)) and x : nat(n). The type of Y assures that it suffices to show:

if (x > 100) then x− 10 else f (f (x + 11)) : ∀n. nat(n)→•101 .−nnat(g(n)).

We assume that− and + satisfy ∀m.∀n. nat(m)→nat(n)→nat(n .−m) and ∀m.∀n. nat(m)→nat(n)→nat(n+m),
respectively. First, we get:

f (x+11) : ••101 .−(n+11)nat(g(n+11)).

If n ≤ 90, then we get f (x+11) : •91 .−n nat(91) by the definitions of .− and g; and therefore, f (f (x+11)) : •91 .−n

•101 .−91nat(g(91)), which is equivalent to •101 .−nnat(91). On the other hand, if 90 < n ≤ 100, then we similarly
get f (x+11) : •nat(n+1); and therefore, f (f (x+11)) : ••101 .−(n+1)nat(g(n+1)), which is also equivalent to
•101 .−nnat(91). Otherwise, i.e., if 100 < n, obviously x−10 : nat(g(n)).

In this derivation, the fixed point combinator worked as the induction scheme discussed in Introduction with a
sequence S0, S1, S2, . . ., Sn as follows:

S0 = V
Sk+1 = { f | ∀n ≥ 101 .− k. f(n) = g(n) }.

Note also that if I(nat(n))ξ
k does not depend on k, then the interpretation of ` f : ∀n. nat(n)→•101 .−nnat(g(n))

implies f ∈ I(∀n. nat(n) → nat(g(n)))ξ
k for every k. Therefore, the apparent complexity of the type expression

is not essential, and it can be observed that ` f : ∀n. nat(n) → nat(g(n)) becomes formally derivable from
` f : ∀n. nat(n)→•101 .−nnat(g(n)) if we introduce another modality, say ut, which is interpreted as:

I(utA)ξ
k = { u | u ∈ I(A)ξ

l for every l },
and accordingly enjoys the following subtyping relations and typing rules:

– A ¹ B implies utA ¹ utB
– ut(A→B) ¹ utA→utB
– utA ¹ A
– utA ¹ ututA
– ut•tA ¹ utA
– nat(n) ¹ utnat(n)

Γ ` M : A

utΓ ` M : utA
(ut)

utΓ1 ∪ •Γ2 ` M : •A
utΓ1 ∪ Γ2 ` M : A

(•)

The (•)-rule supersedes the original one. Recursive type variables are not allowed to occur in scopes of the ut-
operator, and I(A)ξ

k is now defined by induction on the lexicographic ordering of <b(A), k, r(A)>, where b(A) is
the depth of nesting occurrences of ut in A.

48

The Nat(n)-example. We now reconsider the example of object-oriented natural numbers with an addition method.
We revise the definition of Nat(n) as follows:

Nat(n) ≡ ((n = 0) + (n > 0 ∧ •Nat(n−1))
× (∀m. •Nat(m)→•Nat(n+m))).

Then, the specifications of add and add′ are now different as follows:

add : ∀n. ∀m. Nat(n)→•Nat(m)→•Nat(n+m)
add′ : ∀n. ∀m. •Nat(n)→ Nat(m)→•Nat(n+m)

We can show s : ∀n. Nat(n)→Nat(n+1) by deriving <i2 x, λy. add x (s y)> : Nat(n+1) from s : • ∀n. Nat(n)→
Nat(n+1) and x : Nat(n). Obviously,

i2 x : (n+1 = 0) + (n+1 > 0 ∧ •Nat(n+1−1)).

If y : •Nat(m), we get s y : •Nat(m+1), and consequently,

add x (s y) : •Nat(n+1+m).

We thus get <i2 x, λy. add x (s y)> : Nat(n+1). Note that, on the other hand, under similar assumptions, we can
only get

add′ x (s′ y) : ••Nat(n+1+m),

and fail to derive s′ : ∀n. Nat(n)→ Nat(n+1).

15 Concluding Remarks

We have presented a modal typing system with recursive types and shown its soundness with respect to a realizability
interpretation and the convergence of well-typed terms according to their types. The decidability questions for type
checking, typability and inhabitation of λ•µ types are still open. Although we presented it as a typing system,
we do not intend to apply it directly to type systems of programming languages. Since our framework asserts the
convergence of derived programs, typing general recursive programs naturally requires some (classical) arithmetics
as seen in the case of the 91-function, which would make mechanical type checking impossible. Our goal is to capture
a wider range of programs in the proofs-as-programs paradigm and give an axiomatic semantics to them preserving
the compositionality of programs. We have seen that our approach is applicable to some interesting programs such
as fixed point combinators and objects with binary methods, which have not been captured in the conventional
frameworks.

Similar results concerning the existence of fixed points of proper type expressions (Lemma 10.3.1 in our case)
could historically go back to the fixed point theorem of the logic of provability (see [5, 18]). The difference is that
our logic is intuitionistic, and fixed points are treated as sets of realizers. Interestingly, by applying (¹) to the type
(•X →X)→X of the fixed point combinators, we can also derive •(•X →X)→ •X , i.e., Löb’s axiom schema
ut(utφ → φ) → utφ representing the well-foundedness of the (classical) Kripke frame. It should be observed that
(utφ→φ)→φ is valid based on intuitionistic frames, where φ→utφ is valid, if and only if the frame is well-founded.

Our intended semantics of λ•µ suggests that our modal logic could be related to some temporal logic of discrete,
linear time with finite past and infinite future, where the modal operator • corresponds to the “previous time”, or
“yesterday”, modality. Gabbay and Hodkinson discussed such a temporal logic and its fixed point operator [12, 16];
however, the relationship with λ•µ is not obvious since their temporal logic is based on classical logic.

Acknowledgments

The author is greatly indebted to Professor Solomon Feferman for the opportunity to develop the main part of this
research in a stimulating environment at Stanford University.

49

References

1. M. Abadi and L. Cardelli. A theory of objects. Springer-Verlag, 1996.
2. R. M. Amadio. Recursion over realizability structure. Information and Computation, 91(1):55–85, 1991.
3. R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM Transactions on Programming Languages and Systems,

15(4):575–631, 1993.
4. H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, editors, Handbook of

Logic in Computer Science, volume 2, pages 118–309. Oxford University Press, 1992.
5. G. Boolos. The logic of provability. Cambridge University Press, 1993.
6. K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing object encodings. Information and Computation, 155:108–133, 1999.
7. L. Cardelli. Amber. In G. Cousineau, P.-L. Curien, and B. Robinet, editors, Combinators and functional programming

languages, volume 242 of Lecture Notes in Computer Science, pages 21–47. Springer-Verlag, 1986.
8. F. Cardone and M. Coppo. Type inference with recursive types: syntax and semantics. Information and Computation,

92(1):48–80, 1991.
9. R. L. Constable, S. Allen, H. Bromely, W. Cleveland, et al. Implementing Mathematics with the Nuprl Proof Development

System. Prentice-Hall, 1986.
10. R. L. Constable and N. P. Mendler. Recursive definitions in type theory. In Logics of Programs, volume 193 of Lecture Notes

in Computer Science, pages 61–78. Springer-Verlag, 1985.
11. R. L. Constable and S. F. Smith. Partial objects in constructive type theory. In Proceedings of the 2nd IEEE Symposium on

Logic in Computer Science, pages 183–193. IEEE Computer Society Press, 1987.
12. D. M. Gabbay. The declarative past and imperative future. In Temporal logic in specification, volume 398 of Lecture Notes

in Computer Science, pages 409–448. Springer-Verlag, 1989.
13. Y. Gurevich and S. Shelah. Fixed-point extensions of first-order logic. Annals of Pure and Applied Logic, 32(3):265–280,

1986.
14. S. Hayashi and H. Nakano. PX: A Computational Logic. The MIT Press, 1988.
15. R. Hindley. The completeness theorem for typing λ-terms. Theoretical Computer Science, 22:1–17, 1983.
16. I. M. Hodkinson. On Gabbay’s temporal fixed point operator. Theoretical Computer Science, 139:1–25, 1995.
17. W. A. Howard. The formulae-as-types notion of construction. In R. J. Hindley and J. P. Seldin, editors, To H.B. Curry: Essays

on Combinatory Logic, Lambda Calculus and Formalism, pages 480–490. Academic Press, 1980.
18. G. Japaridze and D. de Jongh. The logic of provability. In Handbook of proof theory, pages 475–546. North Holland, 1998.
19. S. Kobayashi and M. Tatsuta. Realizability interpretation of generalized inductive definitions. Theoretical Computer Science,

131(1):121–138, 1994.
20. D. C. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science, 27(3):333–354, 1983.
21. D. Leivant. Typing and computational properties of lambda expressions. Theoretical Computer Science, 44(1):51–68, 1986.
22. D. B. MacQueen, G. D. Plotkin, and R. Sethi. An ideal model for recursive polymorphic types. Information and Computation,

71:95–130, 1986.
23. H. Nakano. A modality for recursion. In Proceedings of the 15th IEEE Symposium on Logic in Computer Science, pages

255–266. IEEE Computer Society Press, 2000.
24. C. Paulin-Mohring. Extracting Fω’s programs from proofs in the calculus of constructions. In Proceedings of the 16th ACM

Symposium on Principles of Programming Languages, pages 89–104, 1989.
25. V. R. Pratt. A decidable µ-calculus (preliminary report). In Proceedings of the 22nd IEEE Symposium on Foundation of

Computer Science, pages 421–427, 1981.
26. D. S. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical Computer Science, 121:411–440, 1993.
27. M. Tatsuta. Realizability interpretation of coinductive definitions and program synthesis with streams. Theoretical Computer

Science, 122:119–136, 1994.

50

