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Abstract

We propose a modal logic that enables us to handle
self-referential formulae, including ones with negative self-
references, which on one hand, would introduce a logi-
cal contradiction, namely Russell’s paradox, in the con-
ventional setting, while on the other hand, are necessary
to capture a certain class of programs such as fixed point
combinators and objects with so-called binary methods in
object-oriented programming. Our logic provides a basis
for axiomatic semantics of such a wider range of programs
and a new framework for natural construction of recursive
programs in the proofs-as-programs paradigm.

1. Introduction

Even though recursion, or self-reference, is an indispens-
able concept in both programs and their specifications, it is
still far from obvious how to capture it in an axiomatic se-
mantics such as the formulae-as-types notion of construc-
tion [17]. Only a rather restricted class of recursive pro-
grams (and specifications) has been captured in this di-
rection as (co)inductive proofs over the (co)inductive data
structures (see e.g., [9, 14, 23, 19, 26]), and, for example,
negative self-references, which would be necessary to han-
dle a certain range of programs such as fixed point combi-
nators and objects with so-called binary methods in object-
oriented programming, still remain out of the scope.

In this paper, we propose a modal logic that provides
a basis for capturing such a wider range of programs in
the proofs-as-programs paradigm. We give the logic as a
modal typing system with recursive types for the purpose
of presentation, and show its soundness with respect to a re-
alizability interpretation which implies the convergence of
well-typed programs according to their types.

Difficulty in binary-methods. Consider, for example, the
specification Nat��� of objects that represent a natural num-
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ber � with a method which returns an object of Nat�����
when one of Nat��� is given. It could be represented by a
self-referential specification such as:

Nat��� � ��� � �� � �� � � � Nat������

� ���� Nat���� Nat��������

where we assume that � and � range over the set of natural
numbers; �,� and� are type constructors for direct sums,
direct products and function spaces, respectively; � and �
have standard logical (annotative) meanings. Although it
is not obvious whether this self-referential specification is
meaningful in a certain mathematical sense, it could be a
first approximation of the specification we want since this
can be regarded as a refined version of recursive types which
have been widely adopted as a basis for object-oriented type
systems [1, 6]. At any rate, if we define an object 0 as:

0 � �i1 �� ��� ���

then it would satisfy Nat���, where i1 is the injection into
the first summand of direct sums and � is a constant. We as-
sume that any program satisfies annotative formulae such as
� � � whenever they are true. We can easily define a func-
tion that satisfies ������Nat����Nat����Nat�����
as:

add � 	 � p2 � 	�

or
add� � 	 � p2 	 ��

where p2 extracts second components, i.e., the method of
addition in this particular case, from pairs. We could also
define the successor function as a recursive program as:

s � � �i2 �� �	� add � �s 	��

or
s� � � �i2 �� �	� add� � �s� 	���

In spite of the apparent symmetry between add and add�,
which are both supposed to satisfy the same specification,
the computational behaviors of s and s� are completely dif-
ferent. We can observe that s works as expected, but s�



does not. For example, p2 �s 0� 0 would be evaluated as:
p2 �s 0� 0 � ��	� add 0 �s 	�� 0 � add 0 �s 0� �
p2 0 �s 0� � ���� �� �s 0� � s 0, whereas p2 �s

� 0� 0 �
��	�add�0�s�	��0 � add�0�s�0�� p2 �s

�0�0 � � � � , and
more generally, for any objects � and 	 of Nat��� (for some
�), p2 �s

� �� 	 � � � �� p2 �s
� 	� �� � � �� p2 �s

� �� 	 �
� � � .

It should be noted that this sort of divergence would also
be quite common in (careless) recursive definitions of pro-
grams even if we did not have to handle object-oriented
specifications like Nat���. The peculiarity here is the fact
that the divergence is caused by a program, add�, which
is supposed to satisfy the same specification as add. This
example shows such a loss of the compositionality of pro-
grams with respect to the specifications that imply their ter-
mination, or convergence. It also suggests that, to overcome
this difficulty, add and add� should have different specifi-
cations, and accordingly the definition of Nat��� should be
revised in some way in order to force it.

�
 and its logical inconsistency. The typing system �

(see [4], and Section 2 of the present paper for a sum-
mary) is a simply-typed lambda calculus with recursive
types, where any form of self-references, including negative
ones, is permitted. A non-trivial model for such unrestricted
recursive types was developed by MacQueen, Plotkin and
Sethi [22], and has been widely adopted as a theoretical ba-
sis for object-oriented type systems [1, 6].

On the other hand, it is well known that logical formu-
lae with such unrestricted self-references would introduce a
contradiction (variant of Russell’s paradox). Therefore, log-
ical systems must have certain restrictions on the forms of
self-references (if ever allowed) in order to keep themselves
sound; for example, 
-calculus [24, 20] does not allow neg-
ative self-references (see also [13]).

Through the formulae-as-types notion, this paradox cor-
responds to the fact that every type of �
 is inhabited by a
diverging program which does not produce any information;
for example, the �-term �������������� can be typed with
every type in �
. Therefore, even with the model mentioned
above, types can be regarded only as partial specifications of
programs, and that is considered the reason why we lost the
compositionality of programs in the Nat��� case, where we
regarded convergence of programs as a part of their spec-
ifications. This shows a contrast with the success of �

as a basis for type systems of object-oriented program lan-
guages, where the primary purpose of types, i.e., coarse
specifications, is to prevent run-time type errors, and ter-
mination of programs is out of the scope.

The logical inconsistency of �
 also implies that no
mater how much types, or specifications, are refined, con-
vergence of programs can not be expressed by them, and
must be handled by endowing the typing system with some

facilities for discussing computational properties of pro-
grams. For example, Constable et al. adopted this ap-
proach in their pioneering works to incorporate recursive
definitions and partial objects into constructive type theory
[10, 11]. However, in this paper, we will pursue another ap-
proach such that types themselves can express convergence
of programs.

Towards the approximation modality. Suppose that we
have a recursive program � defined by:

� � � ����

and want to show that � satisfies a certain specification 
.
Since the denotational meaning of � is given as the least
fixed point of � , i.e., � � ��	��� �

����, a possible way
to do that would be to apply Scott’s fixed point induction
[25] by showing that:

– � satisfies 
,

– � ��� satisfies 
 provided that � satisfies 
, and

– 
 is chain closed.

However, this does not suffice for our purpose if 
 includes
some requirement about the convergence of � , because ob-
viously �, or even �����, could not satisfy the require-
ment. So we need more refined approach. The failure of the
naive fixed point induction above suggests that the specifi-
cation to be satisfied by each ����� inherently depends on
�, and the requirement concerning its convergence must be-
come stronger when � increases. This leads us to a layered
version of the fixed-point induction scheme as follows: in
order to show that � satisfies 
, it suffices to find an infinite
sequence 
�, 
�, 
�, � � � of properties, or (virtual) specifi-
cations, such that:

(1) 
 �
�
��� 
�,

(2) 
��� 	 
�,

(3) � satisfies 
�,

(4) � ��� satisfies 
��� provided that � satisfies 
�, and

(5) 
� is chain closed.

For, since ����� 
 
� for every � by (3) and (4), we get
� ���� 
 
� for every � � � by (2). This and (5) imply
� 
 
� for every �, and consequently � 
 
 by (1).

In this scheme, the sequence 
�, 
�, 
�, � � � can be re-
garded as a successive approximation of 
, and � a (higher-
order) program which constructs a program that satisfies

��� from one that satisfies 
�. It should be also noted that
� works independently of �. This uniformity of � over
� leads us to consider a formalization of this scheme in a
modal logic, where the set of possible worlds (in the sense
of Kripke semantics) consists of all non-negative integers,



and 
� in the induction scheme above corresponds to the
interpretation of 
 in the world �. We now write � r� 
 to
denote the fact that � satisfies the interpretation of 
 in the
world �, and define a modality, say �, as:

� r� �
 iff � � � or � r��� 
.

The condition (2) of the induction scheme says that � r� 

implies � r� 
 for every � 
 �; in other words, the inter-
pretation of specifications should be hereditary with respect
to the accessibility relation �. In such a modal framework,
the specification to be satisfied by � can be represented by
�
�
 provided that the�-connective is interpreted in the
standard way in each world, and our induction scheme can
be rewritten as:

if � r� 
 and � r� �
 � 
 for every � � �, then
� r� 
 for every �.

Furthermore, if we assume that 
� is a trivial specification
which is satisfiable by any program, then, shifting the pos-
sible worlds downwards by one, we can simplify this to:

(�) if � r� �
�
 for every �, then � r� 
 for every �.

Although this assumption about 
� somewhat restricts our
choice of the sequence 
�, 
�, 
�, � � �, it could be thought
rather reasonable because, at any rate, 
� must be an almost
trivial specification that is even satisfiable by �. Note that

��� occurring in the induction now corresponds to the in-
terpretation of 
 in the world �, and 
� corresponds to the
interpretation of �
 in the world 0.

From this interpretation, we can extract some fundamen-
tal properties concerning the �-modality, which introduce a
subsumption, or subtyping, relation over specifications into
our modal framework. First, the hereditary interpretation of
specifications implies the following property:

– � r� 
 implies � r� �
.

Second, this and the standard interpretations of� imply the
following two properties:

– � r� 
� � implies � r� �
� �� , and

– � r� �
� �� implies � r� ��
� � �.

Furthermore, if � r� �� � for every � and �, where �
is the trivial specification which is satisfiable by any pro-
gram, i.e., the universe of (meanings of) programs, then the
converse of the second one is also true, that is:

– � r� ��
� � � implies � r� �
� �� .

Note that this is not always the case because we could
consider non-extensional interpretations, e.g., F-semantics
[15], in which ��� � r� �� � holds, but � r� �� �
does not.

Specification-level self-references. This modal frame-
work introduced for program-level self-references also pro-
vides a basis for specification-level self-references. Sup-
pose that we have a self-referential specification such as:


 � ��
��

As we saw in the Nat��� case, negative reference to 
 in
� can introduce a contradiction in the conventional setting,
and this is still true in our modal framework. However, in
the world �, we can now refer to the interpretation of 
 in
any world � � � without worrying about the contradiction.
That is, as long as 
 occurs only in scopes of the modal
operator � in �, the interpretation of 
 is well-defined and
given as a fixed point of �, which is actually shown to be
unique. For example, if 
 is defined as 
 � �
 � � , then

 could be interpreted in each world as follows:


� � �� ��


� � 
� � ���� ���� ���


� � 
� � ��
� � ���� ���� ����� ���
...


��� � 
� � �
�� �����
...

where 
� and �� are the interpretations of 
 and � in the
world �, respectively, and the notations such as� and� are
abused to denote their expected interpretations also. Note
that this kind of self-references provides us a method to de-
fine the sequence 
�, 
�, 
�, � � � for the refined induction
scheme when we derive properties of recursive programs,
and the induction scheme would be useless if we did not
have such a method.

In the following sections, we will see that this form
of specification-level self-references is quite powerful, and
captures a wide range of specifications including those
which are not representable in the conventional setting such
as ones for add and add� in the Nat��� case. Further-
more, the modal version (�) of the induction scheme turns
out to be derivable from other properties of the �-modality
and such self-referential specifications, where the derivation
corresponds to fixed point combinators, such as Curry’s Y.
This also gives us a way to construct recursive programs
based on the proofs-as-programs notion.

2. A brief review of ��

To fix notation, we begin with a brief review of �
,
which is a simply typed lambda calculus with recursive
types. We first assume a set Exp of untyped �-terms
possibly containing individual constants (�� �� � � �). We
use �������� � � � to denote �-terms. Free and bound




 � �� � �� ��� � � �
(var)


 ��� � � ����
(const)


 ��� � � �


 ��� � � ��
����� �� ����

��


 � �� � �� ��� � � �


 ��� ��� � � ���
(� I��)


� ��� � � ��� 
� ��� � � �


� � 
� ��� �� � �
(�E��)

Figure 1. The typing system �


occurrences of individual variables and the notion of �-
convertibility are defined in the standard manner. Here-
after, we identify �-terms by this �-convertibility. We de-
note the set of individual variables occurring freely in � by
�� ���, and use � ������� � � � � �����
 to denote the �-
term obtained from a �-term � by substituting ��� � � � � ��

for each free occurrence of individual variables ��� � � � � ��,
respectively, with necessary �-conversion to avoid acciden-
tal capture of free variables.

�-reduction is also defined in the standard manner, and
treated as a binary relation�

�
over Exp. We denote the tran-

sitive and reflexive closure of �
�

by ��
�

, and the symmetric
closure of �

�
by �

�
. We define the equivalence relation �

�

as the transitive and reflexive closure of �
�

. Our intended
semantics for untyped �-terms is summarized as the follow-
ing, where we do not require extensionality with respect to
their interpretations.

Definition 1 (�-model). A �-model of Exp is a tuple �� �
�� �� �� 



�
� such that:

1. � : a non-empty set.

2. � � Const�� .

3. � � � � � � � � � .

4. ���


�
� � Exp� �Var����� .

5. ���


�
� �  ���.

6. ���

�� � ����.

7. ���� 


�
� � ��� 



�
� � ��� 



�
� .

8. ����� � 


�
� � ! � ��� 



�
��	
��, where  �!��
��� � ! and

 �!��
�	� �  �	� if 	 �� �.

9. If � �
�
� , then ��� 

�� � ��� 

�� .

Definition 2 (Type expressions of �
). The syntax of the
type expressions of �
 is defined relatively to the following
two sets: TConst of type constants ("�#�$� � � �) and TVar
of countably infinite type variables (%� &� '� � � �). The set

TExp�� of type expressions of �
 is defined as follows:

TExp�� ��� TConst (type constants)
� TVar (type variables)
� TExp��� TExp�� (function types)
� 
TVar� TExp�� (recursive types)�

We use ����(�)� � � � to denote type expressions of �
.
We regard a type variable % as bound in 
%��. We use
�����%�� � � � � ���%�
 to denote the type expression ob-
tained from � by substituting ��� � � � � �� for each free oc-
currence of %�� � � � � %�, respectively. We denote the set of
type variables occurring freely in � by ��� ���. We re-
gard �-convertible type expressions as identical; for exam-
ple, 
%�% � & � 
'�'� & . We define the equivalence
relation���over TExp�� considering two type expressions
of �
 equivalent modulo ��� if they have the same (possi-
bly infinite) type expression obtained by unfolding recur-
sive types 
%�� occurring in them to ��
%���% 
 indef-
initely. This equivalence relation is known to be decidable
(see [8] and [3]).

Definition 3 (Typing contexts). A typing context, or a
context for short, of �
 is a finite mapping that assigns
a type expression of �
 to each individual variable of its
domain. We use 
, 
�, � � � to denote contexts, and ��� �
��� � � � � �� � ��� to denote a context that assigns �
 to �

(* � �� � � � ��).

Definition 4 (�
). Let � be a mapping that assigns a type
constant ���� to each individual constant �. The typing sys-
tem �
 is defined relatively to this � by the derivation rules
shown in Figure 1.

Definition 5 (Realizability models of �
). A realizabil-
ity model of �
 is a tuple �� � �� �� �� 

�� � � Æ� �� 

�� such
that:

1. �� � �� �� �� 


�
� is a �-model of Exp.

2. � 	 ���� �� � 
 � 
 	 � ��

3. Æ � TConst��

4. ���� 
 Æ������



5. ���


�
� � TExp��� �TVar�� ���

6. ��% 


�
� � +�%�

7. ��" 


�
� � Æ�" �

8. �����


�
� � � ! � ! �, 
 ���



�
� for every , 
 ���



�
� �

9. If � ����, then ���


�
� � ���



�
� .

It is not straightforward to construct a non-trivial realizabil-
ity model of �
. The first non-trivial model was developed
by MacQueen, Plotkin and Sethi [22], by constructing a
complete metric space of types and by interpreting recur-
sive types as the fixed points of contractive type construc-
tors (see also [2, 8]).

Proposition 1 (Soundness of �
). Let �� � �� �� �� 

�� � �

Æ� �� 


�
� be a realizability model of �
. If ��� � ��� � � � �

�� � ��� ��� � � � is derivable, then ��� 


�
� 
 ���



�
�

for every + and  provided  ��
� 
 ���



�
� (* � �� �� � � � �

�).

Nevertheless, as mentioned in Introduction, unrestricted
self-references allowed in �
 cause a logical contradiction
as follows (Curry’s paradox):

Proposition 2. ��� ���� ��� ���� ��� � � is derivable
for any type expression �.

Proof. Let ( � 
%�% ��, and � as follows:

��

� �( ��� � �(

� �( ��� � �(��
(���)

� �( ��� � �(

� �( ��� �� ��
(��)

��� ����� �(��
(��)

Then, we can derive it as follows:

... �
��� ����� �(��

... �
��� ����� �(��

��� ����� �(
(���)

��� ������� ������� ��
(��)

��

3. The typing system ���

We now define a modal typing system, which is denoted
by ��
, based on the idea discussed in Introduction. First,
as a preparation for introducing the syntax of type expres-
sions, we give the one of pseudo type expressions, which
are obtained by adding a unary type constructor � to the one
of TExp��.

Definition 6. We define the set PTExp of pseudo type ex-
pressions as follows:

PTExp ��� TConst (type constants)
� TVar (type variables)
� PTExp� PTExp (function types)
� �PTExp (approximative types)
� 
TVar�PTExp (recursive types)�

We assume that� associates to the right as usual, and each
(pseudo) type constructor associates according to the fol-
lowing priority:

(Low) 
%� � � � � (High)�

For example, �
%��% � & � ' is the same as ��
%�
���%�� �& � '���. We use � as an abbreviation for

%��% and use ��� to denote a (pseudo) type expression
� � � � �� �� �
� times

�, where � � �.

Definition 7 (�-variants). A type expression � is a �-
variant if and only if � � ���
%���

��
%���
�� � � � 
%��

���%
 for some �, ��, ��, ��, � � �, ��, %�, %�, � � �, %�

and * such that � 
 * 
 � and �
 ��
�� ��
�� � � � ��
�� � �.

Definition 8 (Properness). A pseudo type expression � is
proper in % if and only if % occurs freely only (a) in scopes
of the �-operator in �, or (b) in a subexpression �� ( of
� with ( being a �-variant.

For example, " , �% , ��% � & �, % � �
&��& and 
&�
��% � & � are proper in % , and neither % , % � & nor

&�
'�%� & is proper in % .

Definition 9 (Type expressions of ��
). A type expres-
sion is a pseudo type expression such that � is proper in
% for any of its subexpressions in the form of 
%��. We
denote the set of type expressions of ��
 by TExp.

For example, " , % , % � & , 
%��% � & , 
%�% � �
and 
%��
&�%�' are type expressions of ��
, and nei-
ther 
%�% � & nor 
%�
&�% � & is a type expression
of ��
. We also use ����(�)� � � � to denote type expres-
sions of ��
, and define other notations such as ��� ���
and �����%�� � � � � ���%�
 similarly to the case of �
.

Definition 10. We define -���, the rank of �, as follows:

-�" � � -�%� � -���� � �

-��� �� �

�
� (� is a �-variant)
����-���� -���� � � (otherwise)

-�
%��� � -��� � �

Observe that -�����% 
� � -�
%��� for every � if � is
proper in % .



. � �% � & � � % � &
(�-assump)

. � � � �
(�-�)

. � � � ��
��-reflex� (� � ��)

.� � � � � .� � � � (

.� � .� � � � (
(�-trans)

. � � � �

. � �� � ��
(�-�)

.� � �� � � .� � � � ��

.� � .� � ��� � ��� ��
(�-�)

. � � � ��
(�-approx)

. � �� � � �����
(�-��)

. � ��� �� � ������
(�-��)

. � �% � & � � � � �

. � 
%�� � 
&��
��-��

�
� �� ��	 �
� � ��	 ���, � �� ��	 �
� � ��	 ���,
and � and � are proper in � and � , respectively

�

Figure 2. The subtyping rules of ��


Definition 11 (�). The equivalence relation � over TExp
is defined as the smallest binary relation that satisfies:

– � � �.

– If � � �, then � � �.

– If � � � and � � (, then � � (.

– If � � �, then �� � ��.

– If � � ( and � � ), then ��� � ( �).

– ��� � ���.

– 
%�� � ��
%���% 
.

– If � � (���% 
 and ( is proper in % , then � � 
%�(.

Two type expressions of ��
 are equivalent modulo �, if
their (possibly infinite) type expression obtained by indefi-
nite unfolding recursive types occurring in them are identi-
cal modulo the rule ��� � ���.

Proposition 3. A type expression � is a �-variant if and
only if � � �.

Definition 12 (Canonical types). We define a set CTExp
of canonical type expressions as follows:

CTExp ��� � � ��TConst � ��TVar
� ���TExp� TExp��

where � is an arbitrary non-negative integer.

Proposition 4. There exists an effective procedure for cal-
culating a canonical type expression �� such that �� � �
from a given type expression � of ��
.

Subtyping. As mentioned in Introduction, our intended
interpretation of the �-modality introduces a subtyping re-
lation into TExp. We now define the subtyping relation by
a set of inference rules as in [3].

Definition 13. A subtyping assumption is a finite set of
pairs of type variables such that any type variable appears
at most once in the set. We write �%� � &�� %� �
&�� � � � � %� � &�� to denote the subtyping assumption
� �%
� &
� � * � �� �� � � � � � �. We use ., .�, .�, .�,
� � � to denote subtyping assumptions, and ��� �.� to de-
note the set of type variables occurring in ..

Definition 14 (�). We define the derivability of subtyping
judgment . � � � � by the derivation rules shown in
Figure 2. Note that . � �% � & � and .� � .� in the rules
must be (valid) subtyping assumptions, i.e., any type vari-
able must not have more than one occurrence in them. We
also define a binary relation� over TExp as: � � � if and
only if �� � � � � is derivable.

Most of the subtyping rules are standard. The rule ��-
�
corresponds to the “Amber rule” [7]. The rules ��-��,
��-��, ��-approx�, ��-��� and ��-��� reflect our in-
tended meaning of the �-modality discussed in Introduction.

Proposition 5 (Basic properties of �).

1. � � � if and only if � � �.

2. �� � �� if and only if � � �.

3. �� �� % , �� �� " , and �� �� �� (.




 � �� � �� � � � �
(var)


 � � � ����
(const)


 � � � �
(�)

�
 � � � ��


 � � � �
(�)


 � � � � � � � �


 � � � �
(�)


 � �� � �� � � � �


 � ��� � � ���
(� I)


� � � � ����� �� 
� � � � ���


� � 
� � �� � ���
(�E)

Figure 3. The typing rules of ��


The typing rules. We now define the typing rules of ��
.
According to the intended meaning of �, two new typing
rules, ��� and ���, are added and the ��E��� rule is gener-
alized to handle types with the �-modality.

Definition 15 (Typing rules). Typing contexts for ��
 are
defined similarly to the case of �
. Let � be a mapping
that assigns a type constant ���� to each individual constant
�. The typing system ��
 is defined relatively to � by the
derivation rules shown in Figure 3, where �
 denotes the
typing context ��� � ���� �� � ���� � � � � �� � ���� when

 � � �� � ��� �� � ��� � � � � �� � ���.

The ���-rule represents the fact that every possible world �
has its successor ���. Since the interpretation of 
 � � �
� in the world � is identical to the one of �
 � � �
�� in the world ���, 
 � � � � is valid whenever so
is �
 � � � �� . The ��E�-rule allows us to derive
� ��� �	� �	 � ������������ for every � and �.
Therefore, ������ and ����� are logically equivalent,
even though not equivalent as sets of �-terms. Note that
����� � ���� ��, but ���� �� �� ��� ��.

Example 1. We can derive Curry’s fixed-point combinator
Y in ��
; more precisely, the following is derivable.

� ��� ���� � ����� ���� � ����� � ��%�%��%

Let a formula � � 
&��& � % and a derivation � as
follows:

��

� � �%�% � � � �%�%
(var)

� � �� � � � ��
(var)

� � �� � � � �����%�
(�)

� � �� � � � ��
(var)

� � �� � � � ���
(�)

� � �� � �� � �%
.......

(�E)

� � �%�%� � � �� � � ���� �%
(�E)

� � �%�% � ���� ���� � ���%
(�I)

Then, let 
 � �� � �%�%� and � � ��� � ����. We can
derive Y as follows:

... �

 � � � ���%

... �

 � � � ���%


 � � � ��
(�)


 � �� � %
(�E)

� ��� �� � ��%�%��%
(�I)

We can also observe that Turing’s fixed point combinator
�������� ������ ���� ��� � ������ has the same type. The
type ��%�%��% gives a concise axiomatic meaning to
the fixed point combinators; it says that they can produce an
element of % with a given function that works as an infor-
mation pump from �% to % ; in other words, they provide
the induction scheme discussed in Introduction. The type
thus enables us to construct recursive programs using the
fixed point combinators without analyzing their computa-
tional behavior. We will see some examples of such recur-
sive programs in Section 6.

Basic property of ��
. The typing system ��
 enjoys
some basic properties such as subject reduction property.

Lemma 1. Let 
� and 
� be typing contexts such that
)/��
�� � )/��
�� � ��. If 
� � 
� � � � � is
derivable, then so is �
� � 
� � � � �� .

Lemma 2 (Substitution lemma). If 
 � �� � �� �
� � � and 
 � � � � are derivable, then so is

 � � ����
 � � .

Theorem 1 (Subject reduction). If 
 � � � � is deriv-
able and � �

�
� �, then 
 � � � � � is derivable.

Proof. By induction on the structure of � . Use Lemmas 1
and 2. ��



4. A realizability interpretation

In this section, we give a realizability interpretation of
��
, and show soundness of ��
 with respect to the inter-
pretation.

Definition 16. Let �� � � � be a partially ordered set. We
define a set��� � �� of infinite sequences of elements of �
as follows:

��� � �� �

��0�� 0�� 0�� � � � 0�� � � �� � 0���� 0� for every � �

We denote the �-th element of 0 
 ��� � �� by 0�. Note
that 0 starts with its 0-th element 0�.

Definition 17. A realizability interpretation of ��
 is a tu-
ple �� � �� �� �� 

��  � 1� such that:

1. �� � �� �� �� 


�
� is a �-model of Exp.

2.  	 � .

3. , � ! 
  for every , 
  and ! 
 � .

4. 1 � TConst��� � 
 �  	 
 	 � �� 	�.

5. ���� 
 1������� for every � and �.

We call a mapping 2 � TVar � �� � 
 �  	 
 	 � �� 	�
a type environment.

Definition 18 (Semantics of types). Let �� � �� �� �� 

��
 � 1� be a realizability interpretation of ��
, 2 a type en-
vironment. We assign an element !���� of ��� 
 �  	

 	 � �� 	� to each type expression � as follows:

!�" ��� � 1�" ��

!�%��� � 2�%��

!������ � � , � , 
 !����� for every � � � �

!��� ���� �	




�





�
,














1. , 
 !��� ���� for every � � �.

2. If � is not a �-variant, then , � ! 

!����� for every ! 
 !����� .

3. , 
  or , � ����� � 


�
� for some �,

 and � .

�




�





�

!�
%����� � !���
%���% 
���

Note that the !����� is defined by induction on the lexico-
graphic ordering of ��� -����. We can easily check that
 	 !������� 	 !���

�
� for every �. It should also be noted

that !����� � � whenever � is a �-variant; and therefore,
the conditional “if � is not a �-variant” is redundant for
the clause 2 of the definition of !�����. The set  takes
a rather technical role (cf. [21]) in this semantics, and is

only used to show head normalizability of �-terms of cer-
tain types in the proofs of (2) and (3) of Theorem 3. It can
usually be considered an empty set. The third condition for
, 
 !��� ���� implies that we distinguish ��� �� from
� unless � �

�
�	� � for some 	 and � , even if � has a

function type. Note that !���������� � !��������� for
every � � �, but !���������� � � and !��������� �� �
by this condition. Thus, ������ � ����� is not valid
in this interpretation. We can also consider a variant sys-
tem of ��
 with this equality, where we have to drop the
third condition from , 
 !��� ���� to get its soundness.
However, we omit the details from this paper.

The typing system ��
 is sound with respect to this se-
mantics.

Lemma 3. 1. If � � �, then !���� � !���� .

2. If � � �, then !����� 	 !����� for every �.

Theorem 2 (Soundness). Let the tuple �� � �� �� �� 

��  �
1� be a realizability interpretation of ��
, and 2 a type
environment. If ��� � ��� � � � � �� � ��� � � � � is
derivable in ��
, then ��� 



�
� 
 !����� for every �, 2 and

 provided  ��
� 
 !��
�
�
� for every * (* � �� �� � � � � �).

Proof. By induction on the derivation and by cases of the
last rule used in the derivation. Most cases are straightfor-
ward. Use Lemma 3 for the case of ���. Prove it by induc-
tion on � in the case of ��I�. ��

5. Convergence of well-typed terms

The soundness theorem assures the convergence of well-
typed �-terms according to their types. In this section we
give a summary of such results.

Definition 19. A �-term � is a weak head normal form
if � is either of the following forms: (1) �, (2) ��� � ,
or (3) � ���� � � � �� (� � �), and is a head normal
form if � is either of the following forms: (1) �, or (2)
���� ���� � � � ���� 	 ���� � � � �� (�� � � �).

We say that � has a (weak) head normal form, or is
(weakly) head normalizable, if � ��

�
� � for some (weak)

head normal form � �. Note that if � is (weakly) head
normalizable and � �

�
� �, then � � is also (weakly) head

normalizable. We also define Böhm trees of �-terms in the
standard manner according to this definition of head normal
forms, in which �-terms without head normal forms are de-
noted by �. We say that a �-term is maximal if its Böhm
tree has no occurrence of �.

Definition 20 (Tail finite types). A type expression � is
tail finite if and only if � � ��������������������



� � � �� ������ � (� � � ���� for some �, ��, ��, ��,
� � �, ��, ��, ��, � � �, �� and ( such that ( �� � and
( �� ���)�3� for every �, ) and 3.

Definition 21. Let � be a type expression. We define sets
3�� ���� and 3�� ���� of type variables as follows:

3�� ��" � � ��

3�� ��%� � �%�� 3�� ��%� � ��

3�� ����� � 3�� ����

3�� ���� ��

�

�
�� (� is a �-variant)

3�� ���� � 3�� ���� (otherwise)

3�� ��
%��� � �3�� ����� �%��

�

�
3�� ����� �%� (% 
 3�� ����)

�� (otherwise)

The set 3�� ���� (3�� ����) consists of the type vari-
ables that have free positive (negative) occurrences in �,
where we ignore any subexpression �� ( of � whenever
( is a �-variant. Note also that 3�� ���� 	 ��� ���.

Definition 22 (Positively and negatively finite types). A
type expression � is positively (negatively) finite if and only
if ( is tail finite whenever � � ��(�% 
 for some � and
% such that % 
 3�� ���� (% 
 3�� ����) and % �

3�� ���� (% �
 3�� ����).

Note that every positively finite type expression is tail finite.

Proposition 6. The following three properties of a given
type expression � are decidable.

(1) � � �.

(2) � is tail finite.

(3) � is positively (negatively) finite.

Proof (sketch). The decidability of (1) is straightforward
from Proposition 3. For the property (2), let � be a set
of type variables, and define TF� as follows:

TF� ��� TConst � % �% 
 TVar � � �

� �TF� � TExp� TF�

� 
%�TF� �	�
 �% 
 TVar��

It suffices to show that � is tail finite if and only if � 

TF	
. For (3), show that � is positively (negatively) finite
if and only if � 
 PF (NF), where PF and NF are defined
as follows:

PF ��� TConst � TVar � �PF � NF� PF

� 
%��

�

%�� 
 TF	
� � 
 PF� and (a)
� 
 NF or (b) % �
 3�� ����

�
�

NF ��� TConst � TVar � �NF � PF� NF
� TExp�� (� is a �-variant)

� 
%��

�
� 
 NF� and (a) 
%�� 
 PF
or (b) % �
 3�� ����

�
�

��

Theorem 3 (Convergence). Let 
 � � � � be a deriv-
able typing judgment of ��
.

(1) If � �� �, then � has a weak head normal form.

(2) If � is tail finite, then � has a head normal form.

(3) If � is positively finite and 
��� is negatively finite for
every � 
 )/��
�, then � is maximal.

Proof (sketch). We consider the following �-model (term
model) �� � �� �� �� 

�� of TExp:

– � � Exp��
�

– � �� � ��

– ���� � �

– ���


�
� �  ���

– ���


�
� � �

– ���� 


�
� � ��� 



�
� ��� 



�
�

– ����� � 

�� � ��� ��� 

����
��

Let  � � � ����� � � � �� � � 
 Var� � � � and �
 

� �* � �� �� � � � � �� �, and 1�" �� �  � � � � �
� �

�
� for some � 
 Const � for every � and " 
 TConst.

We can easily show that �� � �� �� �� 

��  �� 1� is a realiz-
ability interpretation of ��
. Fixing  and 2 as  ��� � �
for every �, and 2�%�� �  � for every � and % , respec-
tively, we get � 
 !����� for every � by Theorem 2 be-
cause ��� 



�
� � � and  ��� � � 
  � 	 !�
������ for

every � 
 )/��
�. We can easily show (1) by cases of
the form of � since we may assume that � is a canonical
type expression. For (2), the proof proceeds by induction
on the structure of �. As for (3), by induction on the depth
of the Böhm tree nodes, in which we use the result of (2);
however, the proof also needs some technical lemmas. ��

6. ��� as a basis for logic of programs

The typing system ��
 and its interpretation can be eas-
ily extended to cover full propositional and second-order
types. For example, we can add the following rules for
product types.


 � � � �� 
 � � � ��


 � ����� � �� ���

��I�


 � � � ����� ����


 � pi � � ���i
��E� �
 � �� ��

With the help of such extensions, ��
 can be a basis for
logic of a wide range of programs. In this section we give
some examples.



Streams. Streams, or infinite sequences, of data of a type
% are representable by the type 
&�% � �& . Since this
type is positively finite, its elements are all maximal. We
can derive recursive programs over streams using fixed
point combinators such as Y; for example, the program
��� Y��	� ��� 	��, which generates a constant stream of
a given value of the type % , has the type % � �, and the
program Y���� ��� �	� �p1 �� � 	�p2 ����, which merges
two streams, has type �����, where � � 
&�%��& .
More complicated programs over streams such as the prime
number generator based on the sieve of Eratosthenes are
also derivable by extending our logic to a predicate logic
endowed with an arithmetic (powerful enough to handle,
e.g., primitive recursive functions) for annotation, and by
allowing type expressions such as ��� as well-formed type
expressions, with 0 being a numeric expression.

McCarthy’s 91-function. Provided such an extension to
predicate logic, we can construct a wide range of recursive
programs with fixed point combinators assuring their termi-
nation. Consider the following recursive program, which
represents McCarthy’s 91-function:

� � � if �� � ���� then �� �� else � �� ��� �����

We can show that � has a type, or satisfies a specification,
��� nat���� ����

���nat�4����, where � ranges over non-
negative integers, and nat��� represents the implementation
of the non-negative integer �; �� and 4 are primitive recur-
sive functions defined in the arithmetic as:

� �� 	 �

�
�� 	 (if � � 	)
� (otherwise)

4��� �

�
�� �� (if � � ���)
�� (otherwise)

and ������� is interpreted as:

!����������� � � , � , 
 !�������� for all � ��

Suppose that � � ���� nat���� ����
���nat�4���� and � �

nat���. The type of Y assures that it suffices to show:

if �� � ���� then �� �� else � �� ��� ����

� ��� nat���� ����
���nat�4�����

We assume that� and � satisfy ������ nat���� nat���
�nat�� ���� and ������ nat����nat����nat�����,
respectively. First, we get:

� ������ � �����
�������	nat�4��������

If � 
 ��, then we get � ������ � �
�
��� nat���� by

the definitions of �� and 4; and therefore, � �� ������� �
�
�

�������
��
�nat�4�����, which is equivalent to ����

���

nat����. On the other hand, if �� � � 
 ���, then
we similarly get � ������ � �nat�����; and therefore,
� �� ������� � �����

������	nat�4������, which is also
equivalent to ����

���nat����. Otherwise, i.e., if ��� � �,
obviously ���� � nat�4����.

In this derivation, the fixed point combinator worked as
the induction scheme discussed in Introduction with a se-
quence 
�, 
�, 
�, � � �, 
� as follows:


� � �


��� � � � � �� � ��� �� �� ���� � 4��� ��

Note also that if !�nat������ does not depend on �, then the
interpretation of � � � ��� nat��� � ����

���nat�4����
implies � 
 !���� nat��� � nat�4������� for every �.
Therefore, the apparent complexity of the type expres-
sion is not essential, and it can be observed that � � �
��� nat���� nat�4���� becomes formally derivable from
� � � ��� nat���� ����

���nat�4���� if we introduce an-
other modality, say ��, which is interpreted as:

!������� � � , � , 
 !����� for every � ��

and accordingly enjoys the following subtyping relations
and typing rules:

– � � � implies ��� � ���

– ����� �� � �������

– ��� � �

– ��� � �����

– ����� � ���

– nat��� � ��nat���


 � � � �

��
 � � � ���
(	
)

��
� � �
� � � � ��

��
� � 
� � � � �
(�)

The ���-rule supersedes the original one in Figure 3. Recur-
sive type variables are not allowed to occur in scopes of the
��-operator, and !����� is now defined by induction on the
lexicographic ordering of �5���� �� -����, where 5��� is
the depth of nesting occurrences of �� in �.

The Nat���-example. We now reconsider the example of
object-oriented natural numbers with an addition method.
We revise the definition of Nat��� as follows:

Nat��� � ��� � �� � �� � � � �Nat������

� ���� �Nat���� �Nat��������

Then, the specifications of add and add� are now different
as follows:

add � ��� ��� Nat���� �Nat���� �Nat�����

add� � ��� ��� �Nat���� Nat�����Nat�����



We can show s � ���Nat��� � Nat����� by deriving
�i2 �� �	� add � �s 	�� � Nat����� from s � ����Nat���
� Nat����� and � � Nat���. Obviously,

i2 � � ���� � �� � ���� � � � �Nat���������

If 	 � �Nat���, we get s 	 � �Nat�����, and conse-
quently,

add � �s 	� � �Nat��������

We thus get �i2 �� �	� add � �s 	�� � Nat�����. Note
that, on the other hand, under similar assumptions, we can
only get

add� � �s� 	� � ��Nat��������

and fail to derive s� � ���Nat���� Nat�����.

7. Concluding Remarks

We have presented a modal typing system with recur-
sive types and shown its soundness with respect to a real-
izability interpretation and the convergence of well-typed
terms according to their types. The decidability questions
for type checking, typability and inhabitation of ��
 types
are still open. Although we presented it as a typing sys-
tem, we do not intend to apply it directly to type systems of
programming languages. Since our framework asserts the
convergence of derived programs, typing general recursive
programs naturally requires some (classical) arithmetics as
seen in the case of the 91-function, which would make me-
chanical type checking impossible. Our goal is to cap-
ture a wider range of programs in the proofs-as-programs
paradigm and give an axiomatic semantics to them preserv-
ing the compositionality of programs. We have seen that our
approach is applicable to some interesting programs such as
fixed point combinators and objects with binary methods,
which have not been captured in the conventional frame-
works.

Similar results concerning the existence of fixed points
of proper type expressions (Lemma 3.1 in our case) could
historically go back to the fixed point theorem of the logic of
provability (see [5, 18]). The difference is that our logic is
intuitionistic, and fixed points are treated as sets of realizers.
Interestingly, by applying ��� to the type ��% �%��%
of the fixed point combinators, we can also derive ���% �
%� � �% , i.e., Löb’s axiom schema ������ � �� � ���
representing the well-foundedness of the (classical) Kripke
frame. It should be observed that ����� ��� � is valid
based on intuitionistic frames, where � � ��� is valid, if
and only if the frame is well-founded.

Our intended semantics of ��
 suggests that our modal
logic could be related to some temporal logic of discrete,
linear time with finite past and infinite future, where the

modal operator � corresponds to the “previous time”, or
“yesterday”, modality. Gabbay and Hodkinson discussed
such a temporal logic and its fixed point operator [12, 16];
however, the relationship with ��
 is not obvious since their
temporal logic is based on classical logic.
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