
Logical Structures of

the Catch and Throw Mechanism

��C���S��M��j����j��

� � m

Logical Structures of

the Catch and Throw Mechanism

��C���S��M��j����j��

Hiroshi Nakano

Department of Applied Mathematics and Informatics

Ryukoku University

A Dissertation

Submitted to the Graduate School of

the University of Tokyo

in Partial Ful�llment of the Requirements for

the Degree of Doctor of Science

February� ����

�Revised May� �����

Abstract

The catch and throw mechanism is a programming construct for non�local exit� In practical

programming� this mechanism plays an important role when programmers handle exceptional

situations� In this thesis we give typing systems which capture the mechanism in the proofs�as�

programs notion� The typing systems can be regarded as a constructive logic with facilities for

exception handling� which includes inference rules corresponding to the operations of catch and

throw� We show that we can actually regard their proofs as programs which make use of the catch

and throw mechanism by a natural interpretation� On one hand the catch and throw mechanism

provides only a restricted access to the current continuation� on the other hand its logic is still

constructive� in contrast to the works due to Gri�n and Murthy on more powerful facilities

such as call�cc �call�with�current�continuation� of Scheme� We also capture the non�determinism

introduced by the catch and throw mechanism in a consistent way�

Acknowledgements

I would like to thank Susumu Hayashi for a great number of helpful suggestions and invaluable

encouragement on this work� This work has been deeply in	uenced by him in a number of aspects�

He pointed out the connection between this work and the literature concerning variants of LJ and

the treatment of goto in Hoare
s logic� I would like to thank Satoru Takasu� who enlightened me

on the fundamental notions of constructive programming� I would like to thank Masami Hagiya

for his valuable comments and helpful support on this thesis� I would also thank Takayasu Ito�

Masahiko Sato� Makoto Tatsuta� Satoshi Kobayashi� and many other people who contributed

directly or indirectly to the development of this thesis� Finally I wish to thank Hiromi Nakano�

my wife� for her patient encouragement and support during this work�

Contents

� Introduction �

��� Backgrounds �

��� The catch and throw mechanism �

�� Overview of the thesis �

��� Related works �

� A typing system for the catch and throw mechanism �

��� A calculus with the catch and throw mechanism � � � � � � � � � � � � � � � � � � �

����� Syntax �

����� Operational semantics of the calculus �

��� The typing system ��

�� A realizability interpretation ��

���� The realizability ��

���� Soundness ��

� The conventional implementation ��

�� De�nition of the machine ��

�� Validity of the machine �

� Realizability by the abstract machine �

� The typing system as a logic ��

��� A sequent calculus style formulation ��

��� The logical meaning of the new connective ��

�� The catch and throw mechanism as structural rules � � � � � � � � � � � � � � � � � �

��� The restriction on the right implication rule �

��� The cut�elimination theorem ��

� A natural extension with a non	determinism �

��� A non�determinism by the catch and throw mechanism � � � � � � � � � � � � � � � ��

��� A calculus with a non�determinism ��

����� Operational semantics ��

�� Basic properties of the calculus ��

��� The typing system Lc�t ��

����� Syntax of typing judgements ��

����� Lc�t �

ii Contents

���� Basic properties of Lc�t ��

��� The subject reduction property of Lc�t ��

��� Lc�t as a logic ��

� A term model for the extended system ��

��� Term models ��

��� An admissible frame �

�� Strong normalizability and normal forms ��

��� Realizability interpretation of Lc�t ��

� Concluding remarks ��

Chapter �

Introduction

��� Backgrounds

It is well known that constructive proofs can be regarded as computer programs by a notion called

�proofs as programs�� By this notion� we can extract executable programs from constructive

proofs of sentences that correspond to the speci�cations of the programs by a �realizability

interpretation� ����� The same schema can be observed in the area of constructive type theories� in

which types specify what programs do� The notion of �proofs as programs� is also called �formula

as types�� �propositions as types� or the Curry�Howard isomorphism ����� and is summarized as

the following correspondences�

Computer programming Constructive logic or type theory

programs proofs

speci�cations formulas or types

program development theorem proving

programmers mathematicians or ���

This paradigm provides a theoretical basis for a formal method of computer programming� in

which programmers construct formal proofs of theorems that specify what the programs do� and

target programs in some form are automatically extracted from the formal proofs� The correctness

of the programs relative to their speci�cation� that is� the theorems� is de�ned by a certain

interpretation of formulas of the formal system� and is assured by the soundness metatheorem for

the formal system with respect to the interpretation� In other words� programmers simultaneously

construct and verify the computer programs in this paradigm�

In the last decade� many works have been intensively done both in practical and in theoretical

approaches ��� �� ��� �� ��� ��� �� ��� in which the most of their attention has been concentrated

on the area that can be regarded as an application of the standard constructive logic� because we

had already have rich results on the constructive logic itself� and the conventional constructive

logics really have enough strength with respect to the class of provable theorems� that is� the

class of realizable speci�cations� However� from the viewpoint of practical programming� some

aspects of the logical activities of programmers have not been captured in this paradigm� For

example� the class of proofs� that is� the class of available programs is also important for the

� Introduction

programmers as well as the class of provable theorems� but is not ever discussed intensively�

Actually� many practical programming languages provide some additional programming facilities

to programmers in order to extend the class of programs� Although these facilities do not extend

the class of realizable speci�cations� that is� we can construct equivalent programs without such

additional facilities� they have important roles for practical program development� The main

aim of this thesis is to capture one of such programming facilities in the notion of �proofs as

programs��

��� The catch and throw mechanism

The catch and throw mechanism is a programming facility for non�local exit� We can �nd

examples of the mechanism in some practical programming languages such as C ���� and Common

Lisp ���� We give some primary introduction about this mechanism by taking Common Lisp

as an example� In the case of Common Lisp� �catch tag form� is a special form that serves as

a target of transfer of control by another special form �throw tag form�� At the evaluation of

�catch tag form�� a catcher marked with the tag is established� and the form is then evaluated�

The result of the form is returned from the catch� except that if a throw special form with the

same tag is executed during the evaluation� then the evaluation is immediately aborted and the

catch returns a value speci�ed by the form of the throw� For example� the evaluation process

of �� �catch �u �� � �� � ���� �� proceeds as follows�

Eval� �� �catch �u �� � �� � ���� ������ Eval� �catch �u �� � �� � ��������
���� Eval� �u����
���� Return� u����
���� Eval� �� � �� � �������
����

���� Eval� �����
����

���� Return� �����
����

���� Eval� �� � ������
����

����
���� Eval� �����

����
����

���� Return� �����
����

����
���� Eval� �����

����
����

���� Return� �����
����

����
���� Apply� � to � and �����

����
���� Return� �����

����
���� Apply� � to � and �����

���� Return� 	
���� Return� 	
���� Eval� ����� Return� ����� Apply� � to 	
 and �

Return� 	�

On the other hand� the evaluation process of �� �catch �u �� � �� � �throw �u ����� ��

proceeds as follows�

�� The catch and throw mechanism �

Eval� �� �catch �u �� � �� � �throw �u ����� ������ Eval� �catch �u �� � �� � �throw �u ���������
���� Eval� �u����
���� Return� u����
���� Eval� �� � �� � �throw �u ��������
����

���� Eval� �����
����

���� Return� �����
����

���� Eval� �� � �throw �u �������
����

����
���� Eval� �����

����
����

���� Return� �����
����

����
���� Eval� �throw �u ������

����
����

����
���� Eval� �u����

����
����

����
���� Return� u����

����
����

����
���� Eval� �����

����
����

����
���� Return� �����

����
����

����
���� Apply� throw to u and ����� Return� ����� Eval� ����� Return� ����� Apply� � to � and �

Return� 	

In practical programming� the catch and throw mechanism plays an important role when pro�

grammers handle exceptional situations� Suppose� for example� we have to construct a program

P with a speci�cation represented by a sequent ��C �E of LJ combining three subprograms

Q � � � A�E� R � �A � B �E and S � �B � C �E� where C is the normal output for the

input �� and E is an error signal which denotes that there is something wrong in the input�

The speci�cations of Q� R and S say that such errors may be detected in the execution of these

subprograms� In this situation� the construction of P in LJ would be as follows�

��� Q
�� A�E

��� R
�A� B �E

��� S
�B � C �E

E � E
�init�

E � C �E
����

�B �E � C �E
����

�A� C �E
�cut�

E � E
�init�

E � C �E
����

�A�E � C �E
����

�� C �E
�cut��

where applications of structural rules are omitted� The constructed program P would work as

follows� The program P �rst calls the subprogram Q and gets its return value� then checks

whether it denotes an error or not� If not� P calls the subprogram R with that value and gets

its return value� P again checks the value and calls S if it does not denote an error� Eventually�

P returns the value returned by S� If P detects an error in the values returned by Q or S� it

immediately returns a value denoting an error� We can �nd an ine�ciency that whenever P gets

values from the subprograms it must check whether they denote an error or not� This is often

found in practical programming without the catch and throw mechanism� If the mechanism is

� Introduction

available� programmers can concentrate on the main stream of programming as if no exceptional

situation can arise� since error signals are passed through ordinary language constructs� Following

the proofs�as�programs notion in the opposite direction� we can �nd that the problem comes from

the restriction of LJ that only one formula is admissible in the right�hand side of sequents� If the

restriction is dropped as in LK� we can construct P � of a speci�cation ��CE from subprograms

Q� � �� AE� R� � �A� BE and S� � �B � CE as follows�

��� Q�

�� AE

��� R�

�A� BE

��� S�

�B � CE

�A� CE
�cut�

�� CE
�cut��

where structural rules are again omitted� The proof is much simpler than the previous one

and easy to develop� The point is that exceptional conclusions are admitted besides the main

conclusion and we can proceed the proof construction as if they do not exist� It re	ects the

programmer
s reasoning behind the catch and throw mechanism well� Of course� we must justify

such a logic constructively so that correct programs can be extracted from the proofs�

In this thesis� we present such an attempt to extract a logical structure from the program�

mer
s reasoning concerning exception handling by the catch and throw mechanism� and capture

the mechanism in the notion of �proofs as programs� by constructive frame works and their

realizability interpretations�

��� Overview of the thesis

Chapter � gives a typing system for a simple programming language equipped with the catch and

throw mechanism� The aim of this chapter is to capture the mechanism with a �xed evaluation

strategy� the call�by�value strategy� Section ��� introduces a calculus with the catch and throw

mechanism� and gives its operational semantics by a set of reduction rules in the manner of

Felleisen et al� ���� This semantics should be a natural translation of the standard operational

semantics of the mechanism in practical programming languages� Section ��� gives a typing

system LCBV

c�t of the calculus� and Section �� gives a realizability interpretation of the typing

system and shows how the catch and mechanism can be captured by proving the soundness

theorem�

Chapter introduces an abstract stack machine to imitate the standard implementation of the

catch and throw mechanism in practical programming languages� and shows that the semantics

de�ned by this machine is equivalent to the one given in Section ���� Another realizability

interpretation of LCBV

c�t de�ned directly by the abstract machine is also given�

Chapter � discusses the formal system regarding it as a logic� We show that LCBV

c�t is a

conservative extension of the propositional fragment of the standard intuitionistic logic such as

Gentzen
s LJ or NJ� We reformulate LCBV

c�t into a sequent calculus style formal system in order to

clarify the di�erence between LCBV

c�t and the standard formulations of classical and intuitionistic

logic� The cut�elimination theorem of the sequent calculus style reformulation is also given�

Chapter � deals with the non�determinism introduced by the catch and throw mechanism�

The reduction rules of the calculus given in Chapter � is naturally extended to capture this

non�determinism� in which any evaluation strategy should be allowed� The typing system of the

�� Related works �

calculus is also extended� We show that although the well�typed terms of the system do not have

the Church�Rosser property� they have the subject reduction property instead�

Chapter � is devoted to construction of a term model of the extended system introduced in

the previous chapter� Unfortunately� the standard method is not enough to this construction�

and a set of terms that has a certain property is required for the domain of interpretation� By

this term model� we show the strong normalizability of the well�typed terms and the soundness

of the extended typing system relative to an extended realizability interpretation�

��� Related works

From a computational point of view� the catch and throw mechanism is just a subcase of more

powerful facilities for control such as call�cc of Scheme and Felleisen
s C operator ���� and the

relation between such facilities and the computational meaning of classical logic has been inves�

tigated in various ways �� ��� ��� ��� ��� ��� ��� ��� ��� where the computational behavior of

the facilities is captured as translation processes of classical proofs into intuitionistic ones ����

Murthy showed that classical formal proofs can be regarded as programs with such control

facilities ���� ���� where Felleisen
s C operator corresponds to the following inference rule of

classical logic�
��A

A
�C�

By a simple modi�cation of Freidman
s work ���� he showed that classical proofs of a formula A

can be translated into intuitionistic proofs of �A������ for any formula �� where

A� � A �A is atomic�

��A�� � A���

�A�B�� � A� �B�

�A�B�� � A� �B�

�A�B�� � A�� �B������

��x�A�� � �x���A�������

��x�A�� � �x�A��

Note that if � does not include any �� � or �� then we can translate classical proofs of � into

intuitionistic ones since �� � ������� in this case� This translation of formulas that maps

A to A� corresponds to the continuation�passing�style translation ��� of programs of type A�

and the computational meaning of C operator can be regarded as a mechanism that transforms

intuitionistic proofs of ����A������� into ones of �A�������

However� from the viewpoint of formal method for computer programming� only a restricted

class of formulas� for example� ��� sentences� are allowed for the speci�cation of programs in order

to assure the total correctness of the programs in these classical frameworks� On the other hand�

any of such restrictions is not required for the frameworks presented in this thesis� that is� any

formula is allowed as a speci�cation of programs� More importantly� the main aim of our work

is to capture the logic behind the use of such facilities in practical programming rather than to

capture their computational behavior� We summarize the basic properties of our frameworks in

comparison among others in the following table�

� Introduction

framework logic trick
proof as

programs
non�determinism

Murthy ���� classical C operator restricted no

���calculus ���� classical � operator restricted no

LC ��� classical involutive negation restricted no

�SymProp �� classical involutive negation restricted yes

LCBV

c�t intuitionistic catch�throw yes no

Lc�t intuitionistic catch�throw yes yes

Chapter �

A typing system for the catch

and throw mechanism

��� A calculus with the catch and throw mechanism

In this section we introduce a simple programming language equipped with the catch and throw

mechanism� and give its operational semantics�

����� Syntax

We �rst give the syntax of the language�

De�nition ��� �Constants and variables� We assume that the following disjoint sets of

individual constants� individual variables and tag variables are given� The syntax of the calculus

is de�ned relatively to these three sets�

Const � a set of individual constants c� d� � � ��

Var � a countably in�nite set of individual variables x� y� z� � � ��

Tvar � a countably in�nite set of tag variables u� v� w� � � ��

De�nition ��� �Terms� We de�ne a set Term of terms by

Term � � � Const j Var

j let Var�Term� Term

j throw Tvar Term j catch Tvar Term

j �Var� Term� j TermTerm

j �Term� Term� j proj�Term j proj�Term

j inj� Term j inj� Term j case Term Var� Term Var� Term

j � Tvar� Term j TermTvar �

where Term� stands for the set of terms that have no free occurrence of tag variables� We use

M�N�K�L� � � � to denote terms�

� A typing system for the catch and throw mechanism

Free and bound occurrences of variables are de�ned in the standard manner� We regard a tag

variable u as bound in catch u M and �u�M � We denote the set of individual and tag variables

occurring freely in M by FIV �M � and FTV �M �� respectively�

Example ��� �Terms�

�x� case x y��inj� y� z��inj� z�

catch u ��� v�proj��x� throw v y��u�

Note that we have a restriction on terms of the form �x�M � For example� �x� throw u x is not

a term since it has a free occurrence of a tag variable u�

The terms of the forms throw Tvar Term and catch Tvar Term provide the catch and throw

mechanism of the language� Roughly� these terms correspond to throw and catch of Common

Lisp ���� respectively� The terms � Tvar� Term and TermTag are used for tag�abstraction and

tag�instantiation� respectively� These terms provide a way of passing tags� Note that tags can

not be passed by usual lambda�abstractions and applications since they are not terms�

We also de�ne the alpha�convertibility in the standard manner where we allow renaming

of bound tag variables as well as bound individual variables� Hereafter� we identify terms by

this alpha�convertibility� We use M �N��x�� � � � � Nn�xn� to denote the term obtained from a

term M by substituting N�� � � � � Nn for each free occurrence of individual variables x�� � � � � xn�

respectively� with alpha�conversion for avoiding capture of free variables� Similarly� we also use

M �v��u�� � � � � vn�un� to denote the term obtained fromM by substituting v�� � � � � vn for each free

occurrence of tag variables u�� � � � � un� respectively� Note that in the case that N�� � � � � Nn have

free tag variables�M �N��x�� � � � � Nn�xn� may not be a well�formed term� because N�� � � � � Nn can

introduce some free tag variables into lambda�abstractions�

Proposition ��� Let M be a term� and let x�� � � � � xm and u�� � � � � un be sequences of distinct

individual and tag variables� respectively� If N�� � � � � Nm are closed terms and v�� � � � � vn are tag

variables� then M �N��x�� � � � � Nm�xm� v��u�� � � � � vn�un� is a term�

Proof� Obvious from the de�nition of Term�

����� Operational semantics of the calculus

We de�ne a call�by�value evaluator of terms to give an intuitive semantics of this calculus� The

evaluator is de�ned in terms of evaluation contexts and a set of rewriting rules for terms� The

basic idea is due to Felleisen et al� ���� In Chapter we will give another operational semantics by

an abstract machine which imitates the standard implementation of the catch�throw mechanism

in some practical programming languages�

De�nition ��� �Values� We de�ne a set Val of closed terms as follows�

Val � � � Const

j �Var� Term j �Val� Val�

j inj�Val j inj�Val

j �Tvar� Val j �Tvar� throw Tvar Val �

Elements of Val are called values� and we use V� V ��W�W �� � � � to denote values�

�� A calculus with the catch and throw mechanism

Note that any value must be a closed term� Therefore any value of the form

�Tvar� throw Tvar Val

must be �u� throw u V for some tag variable u and some value V �

Example ��� �Values�

�x� �� y� y�x

�inj� c�� � u� throw u c��

De�nition ��� �Evaluation contexts� We de�ne a set C of pseudo terms which have a hole�

denoted by �� in them as follows�

C � � � �

j let Var�C� Term

j throw Tvar C j catch Tvar C

j C Term j Val C

j �C� Term� j �Val� C� j proj�C j proj�C

j inj�C j inj�C j case C Var� Term Var� Term

j �Tvar� C j C Tag�

Elements of C are called evaluation contexts� We use C� C�� � � � to denote evaluation contexts�

We use C�M � to denote the term obtained from C by replacing the hole � by a term M �

By the de�nition� no evaluation context captures free individual variables placed at the hole� but

it may capture free tag variables at the hole� For example� if C � catch u � and M � throw u

N � then C�M � � catch u �throw u N ��

Example ��� �Evaluation contexts�

�� y�M �proj� y����� N�

catch u �inj� �throw u ���

Proposition ��
 If C and C� are evaluation contexts� then C�C�� is also an evaluation context�

Proof� Obvious from the de�nition of evaluation contexts�

Proposition ���� If a term M can be written as M � C�throw u V �� where V is a value and

C does not capture u� then the combination of such C and throw u V is unique�

Proof� By induction on the structure of C� Note that no value has free occurrences of tag variables�

�� A typing system for the catch and throw mechanism

De�nition ���� �Rewriting rules� The call�by�value rewriting 	
�
CBV

is de�ned by the follow�

ing rules� where C is an arbitrary evaluation context such that C �� � and C does not capture u�

Note that none of redexes is a value�

catch u V 	
�
CBV

V

catch u C�throw u V � 	
�
CBV

catch u �throw u V �

catch u �throw u V � 	
�
CBV

V

let x�V� M 	
�
CBV

M �V�x�

��x�M �V 	
�
CBV

M �V�x�

�u� C�throw u V � 	
�
CBV

�u� throw u V

��u� V � v 	
�
CBV

V

��u� throw u V � v 	
�
CBV

throw v V

proj��V� W� 	
�
CBV

V

proj��V� W� 	
�
CBV

W

case �inj� V � x�M y�N 	
�
CBV

M �V�x�

case �inj� V � x�M y�N 	
�
CBV

N �V�y�

Proposition ���� Let M be a term� If M 	
�
CBV

N for some N � then N is unique�

Proof� Obvious from the de�nition of 	
�
CBV
�

De�nition ���� �Evaluation steps� A call�by�value evaluation step
�
CBV

is de�ned by

C�M �
�
CBV

C�N � if and only if M 	
�
CBV

N�

Example ���� Let M be a term� and let V and V � be values�

�catch u ��� z�M � �throw u ��x� x����V
�
CBV

�catch u �throw u ��x� x���V

�
CBV

��x� x�V

�
CBV

V

catch u �proj��V� V
���
�

CBV
catch u V �

�
CBV

V �

catch u ����x� � v� throw v x�V �u�
�
CBV

catch u ��� v� throw v V �u�

�
CBV

catch u �throw u V �

�
CBV

V

Let �
�
CBV

be the transitive and re	exive closure of the relation
�
CBV
� We write M �

CBV
N if N is a

normal form of M w�r�t�
�
CBV
� that is� M �
�

CBV
N and N �	
�

CBV
K for any K�

Proposition ���� If M
�
CBV

N � then C�M � 	
�
CBV

C�N � for any evaluation context C�

Proof� Obvious from the de�nitions of
�
CBV

and evaluation contexts�

�� The typing system ��

Proposition ���� Let x�� � � � � xn and y�� � � � � yn be sequences of individual variables� and sup�

pose that x�� � � � � xn are distinct� If M
�
CBV

N � then M �y��x�� � � � � yn�xn�
�
CBV

N �y��x�� � � � �

yn�xn�� Similarly� let u�� � � � � un and v�� � � � � vn be sequences of tag variables� and suppose that

u�� � � � � un are distinct� If M
�
CBV

N � then M �v��u�� � � � � vn�un�
�
CBV

N �v��u�� � � � � vn�un��

Proof� Obvious from the de�nition of
�
CBV
�

Proposition ���� If M is not a normal form� then M can be written in a unique way as

M � C�N � for some evaluation context C and some redex N � i�e�� N 	
�
CBV

K for some K�

Proof� Since M is not normal� there exists at least one combination of such C and N � We can

show the uniqueness by induction on the structure of C�

Therefore� ifM �
CBV

N � then N is unique� But note that N may not be a value even ifM �
CBV

N �

For example� throw u V �
CBV

throw u V � but throw u V is not a value�

Proposition ���� Every value is a normal form�

Proof� Obvious from the de�nition of
�
CBV
�

Proposition ���
 Let V be a value� Let u and C be a tag variable and an evaluation context�

respectively� If C does not capture u� then C�throw u V � is a normal form�

Proof� By induction on the form of C� Note that C�throw u V � is not a value� because it is not

a closed term�

��� The typing system

We introduce a typing system LCBV

c�t of the language given in the previous section� which can be

regarded as a logical system that captures the catch�throw mechanism�

De�nition ��� �Type expressions� We have �ve kinds of type expressions in LCBV

c�t as fol�

lows�
A � atomic type expression

A�B � conjunction

A�B � disjunction

A�B � implication

A	B � exception

Type expressions are also called formulas�

The last one is introduced to handle the catch�throw mechanism and represents another kind of

disjunction� It corresponds to the type of tag�abstractions� i�e�� terms of the form �Tvar� Term�

We give a precise meaning to the connective 	 by a realizability interpretation later�

De�nition ��� �Type	contexts� An individual type�context� or an individual context for

short� is a �nite mapping which assigns a type expression� i�e�� a formula� to each individual

variable in its domain� We use fx� �A�� � � � � xm �Amg to denote an individual type�context whose

�� A typing system for the catch and throw mechanism

domain is fx�� � � � � xmg and which assigns Ai to xi for any i� where A�� � � � � Am are type expres�

sions� and x�� � � � � xm are distinct individual variables� A tag type�context� or a tag context for

short� is similarly de�ned as a �nite mapping which assigns a type expression to each tag variable

in its domain� We use fu� �B�� � � � � un �Bng to denote a tag type�context� where u�� � � � � un are

distinct tag variables�

De�nition ��� �Typing judgement� Let � be an individual type�context� and a tag type�

context� Let M be a term� and C a type expression� Typing judgements have the following form�

� �M �C ! �

A typing judgement fx� �A�� � � � � xm �Amg � M �C ! fu� �E�� � � � � un �Eng roughly says that when

we execute the program M supplying values of the types A� � � �Am for the corresponding free

variables x�� � � � � xm of the program� it normally returns a value of the type C� otherwise the

program exits with a value which belongs to one of the types E� � � �En� Let us explain by

example� If we have a derivation of a typing judgement fx �A� y �Bg �M �C ! fg� then

�� FIV �M � fx� yg� and

�� if K and L satisfy the speci�cations A and B� respectively� then the evaluation of M �K�x�

L�y� terminates with a value that satis�es the speci�cation C�

Note that this corresponds to the standard interpretation of simply typed lambda calculus� On

the other hand� fx �A� y �Bg �M �C ! fu �Eg says that

�� FIV �M � fx� yg�

�� FTV �M � fug� and

� if K and L satisfy the speci�cations A and B� respectively� then

a� the evaluation of M �K�x�L�y� terminates with a value that satis�es the speci�cation

C� or

b� the evaluation ofM �K�x�L�y� causes a throw�operation of a value to the tag u� which

is not caught by catch�terms� and the thrown value satis�es the speci�cation E�

That is� there are two possible results of the evaluation ofM in the second example� The precise

meaning of typing judgements is given in the next section by a realizability interpretation�

De�nition ��� �Typing rules� The inference rules of LCBV

c�t are as follows�

� � fx �Ag � x �A !
�var�

� � N �A ! � � fx �Ag �M �C !

� � let x�N� M �C !
�let�

� �M �E !

� � throw u M �A ! � fu �Eg
�throw�

� �M �A ! � fu �Ag

� � catch u M �A !
�catch�

�� The typing system ��

� �M �A ! � � N �B !

� � �M� N� �A�B !
���I �

� �M �A�B !

� � proj�M �A !
����E �

� �M �A�B !

� � proj�M �B !
����E �

� �M �A !

� � inj�M �A�B !
����I �

� �M �B !

� � inj�M �A�B !
����I �

� � L �A�B ! � � fx �Ag �M �C ! � � fy �Bg � N �C !

� � case L x�M y�N �C !
���E �

� � fx �Ag �M �B ! fg

� � �x�M �A�B !
���I �

� �M �A�B ! � � N �A !

� �M N �B !
���E �

� �M �A ! � fu �Eg

� � �u�M �A	E !
�	�I �

� �M �A	E !

� � M u �A ! � fu �Eg
�	�E �

Example ��� �Derivations� Let � be as � � fx �A� f �A�Ag�

� � fy �Bg � x �A ! fg
�var�

� � � y� x �B�A ! fu �Ag
���I �

� � f �A�A ! fg
�var�

� � x �A ! fg
�var�

� � f x �A ! fg
���E �

� � throw u �f x� �B ! fu �Ag
�throw�

� � �� y� x� �throw u �f x�� �A ! fu �Ag
���E �

� � catch u ��� y� x� �throw u �f x��� �A !
�catch�

fx �Ag � � f� catch u ��� y� x� �throw u �f x��� � �A�A��A !
���I �

� �x� � f� catch u ��� y� x� �throw u �f x��� �A� �A�A��A !
���I �

There is nothing special except for �throw�� �catch�� ���I �� �	�I � and �	�E �� If we have a term

M of a type E� we can treat the term throw u M as if it belongs to an arbitrary type A� but

in reality� the evaluation of throw u M causes a throw�operation of the result of M to the tag

u instead of returning a value of A� On the other hand� if we have a term M of A which may

throw a value of A to the tag u during the evaluation of M � then we can treat catch u M as

a term of A which causes no throw�operation to u� Once we adopt the interpretation of typing

judgements explained above� these rules for catch and throw are quite natural�

The most important point about our typing rules is a restriction on the rule ���I �� We can

introduce a ��abstraction only if its body has no free tag variable� that is� the tag context of

�� A typing system for the catch and throw mechanism

the premise must be empty� If we dropped this restriction� our intended interpretation of typing

judgements would be a�ected� Consider the following example�

fx �Ag � x �A ! fg
�var�

fx �Ag � throw u x �B ! fu �Ag
�throw�

fg � �x� throw u x �A�B ! fu �Ag
���I �

The derived judgement says that the evaluation of �x� throw u x terminates with a value of

A�B� or a value of A is thrown to the tag u during the evaluation� But the evaluation of

�x� throw u x immediately terminates with itself� which is not a value of A�B� Note that

throw u x is not evaluated until �x� throw u x is applied to some value of the type A� From

the logical point of view� this restriction on ���I � is required to keep the system constructive�

We shall discuss this point in Chapter ��

The restriction on ���I ��rule leads us to introduce the new connective 	� We can not construct

any function that may throw something to the outside of the function without the new connective�

because the body of the ��abstraction must not have any tag variable� We can construct such a

function by the new connective as follows� Let � be as � � fx �A�Bg�

� � x �A�B ! fu �Bg
�var�

� � fy �Ag � y �A ! fu �Bg
�var�

������

� � fz �Bg � z �B ! fg
�var�

� � fz �Bg � throw u z �A ! fu �Bg
�throw�

� � case x y�y z��throw u z� �A ! fu �Bg
���E �

� � �u� case x y�y z��throw u z� �A	B ! fg
�	�I �

fg � �x� � u� case x y�y z��throw u z� ��A�B���A	B� ! fg
���I �

Let M be as M � �x� � u� case x y�y z��throw u z�� and let N be a term of the type A�B�

The function M can be used as follows�

���
fg � M ��A�B���A	B� ! fg

���
fg � N �A�B ! fg

fg � M N �A	B ! fg
���E �

fg � �M N � v �A ! fv �Bg
�	�E �

Normally the function M returns a value of A� otherwise it throws a value of B to the given tag

v�

��� A realizability interpretation

In this section we give a realizability interpretation of LCBV

c�t to show how the catch�throw mech�

anism can be captured in it�

�� A realizability interpretation ��

����� The realizability

Let A be a mapping which assigns a subset of Const to each atomic type� The realizability is

de�ned relatively to this mapping A�

De�nition ��� �Realizability of types� Let V be a value� and A a type� We de�ne a

relation r between values and types as follows�

�� V r A i� V � A�A�� if A is an atomic type�

�� V r A� �A� i� V � �V�� V�� for some V� and V� such that V� r A� and V� r A��

� V r A� �A� i� V � inj
i
W and W r Ai for some W and i �i � �� ���

�� V r A��A� i� V � �x�M for some term M such that for any value W � if W r A�� then

M �W�x� �
CBV

V � and V � r A� for some value V ��

�� V r A� 	A� i� V � �u�M for some u and M such that

�a� M is a value and M r A�� or

�b� M � throw u W and W r A� for some value W �

If the relation holds between a term and a type� we say that the term realizes the type� and the

term is a realizer of the type�

De�nition ��� �Interpretation� We de�ne the interpretation of typing judgements as fol�

lows� The relation

fx� �A�� � � � � xm �Amg ��M �C ! fu� �B�� � � � � un �Bng

holds if and only if for any closed terms K�� � � � �Km such that Ki �
CBV

Wi and Wi r Ai for some

Wi �� � i � m��

�� M �K��x�� � � � �Km�xm� �
CBV

V and V r C for some V � or

�� M �K��x�� � � � �Km�xm� �
CBV

C�throw uj V � and V r Bj for some j� V and C which does

not capture uj�

This interpretation is essentially the same as the standard realizability interpretation of NJ in

the case that the type C does not include any occurrence of 	 and n � �� It should also be

noted that the logical connective 	 corresponds to the semicolon of a typing judgement as �

corresponds to ��

Lemma ��� Suppose that fx� �A�� � � � � xm �Amg ��M �C ! fu� �B�� � � � � un �Bng holds� and let

y� � � � ym and v� � � � vn be a sequence of distinct individual variables and a sequence of distinct

tag variables� respectively� Then

fy� �A�� � � � � ym �Amg �� M �
y�
x�
v�
u� ! fv� �B�� � � � � vn �Bng

also holds� where M �
y�
x�
v�
u� stands for M �y��x�� � � � � ym�xm� v��u�� � � � � vn�un��

Proof� Since M �
y�
x�
v�
u��
K�
y� � M �
K�
x�
v�
u�� straightforward from the de�nition of � ��
M �C ! by Proposition �������

�� A typing system for the catch and throw mechanism

����� Soundness

The following soundness theorem assures us that we can regard the proofs of the formal system

as programs which satisfy the speci�cation de�ned by the realizability interpretation of the

conclusion�

Theorem ��� �Soundness� If � �M �C ! is derivable in LCBV

c�t � then � ��M �C ! holds�

Proof� By induction on the structure of the derivation� Let � be as � � fx� �A�� � � � � xm �Amg�

and let be as � fu� �B�� � � � � un �Bng� Let K�� � � � �Km be closed terms such that Ki �
CBV

Wi

and Wi r Ai for some Wi �� � i � m�� Each induction step is done by cases according to the

rule applied in the last step of the derivation�

Case �� The last rule is �var�� Trivial�

Case �� The last rule is �let�� Let � �M� �D ! and � � fz �Dg �M� �C ! be the premises�

that is� M � let z�M�� M�� By the induction hypothesis� � �� M� �D ! and � � fz �Dg ��
M� �C ! hold� Therefore for some V��

�� M��
K�
x� �
CBV

V� and V� r D� or

�� M��
K�
x� �
CBV

C��throw uj V�� and V� r Bj for some j �� � j � n� and C� which does not

capture uj�

Let z� be a fresh individual variable� In the �rst case�

�let z�M�� M���
K�
x� � let z��M��
K�
x�� M��z
��z��
K�
x�

�
�
CBV

let z��V�� M��z��z��
K�
x�

�
CBV

M��z
��z��
K�
x��V��z

��

� M��V��z��
K�
x��

Since � � fz �Dg ��M� �C ! and V� r D� for some V��

M��V��z��
K�
x� �
CBV

V� and V� r C� or

M��V��z��
K�
x� �
CBV

C�throw vj V�� and V� r Bj

for some j �� � j � n� and C which does not capture vj � Therefore� one of the two conditions of

De�nition ���� is satis�ed� In the second case� let C be as C � let z��C�� M��z��z��
K�
x��

�let z�M�� M���
K�
x� � let z��M��
K�
x�� M��z
��z��
K�
x�

�
�
CBV

let z��C��throw uj V��� M��z��z��
K�
x�

� C�throw uj V���

Since C does not capture uj� the second condition of De�nition ���� is satis�ed in this case�

Therefore � �� let z�M�� M� ! holds�

�� A realizability interpretation ��

Case �� The last rule is �throw�� Let � �M � �Bk !
� be the premise� where � ��fuk �Bkg

and M � throw uk M
�� By the induction hypothesis� for some V ��

�� M ��
K�
x� �
CBV

V � and V � r Bk� or

�� M �
K�
x� �
CBV

C��throw uj V
�� and V � r Bj for some j �� � j � n� and C� which does not

capture uj�

In the �rst case�

�throw uk M ���
K�
x� � throw uk M ��
K�
x� �
�
CBV

throw uk V ��

Therefore the second condition of De�nition ���� is satis�ed since V � r Bk� In the second case�

let C be as C � throw uk C��

�throw uk M
���
K�
x� � throw uk M

��
K�
x�
�
�

CBV
throw uk C

��throw uj V
��

� C�throw uj V
���

Since C does not capture uj� the second condition of De�nition ���� is satis�ed also in this case�

Therefore � �� throw uk M
� �C ! holds�

Case �� The last rule is �catch�� Let � �M � �C ! �fv �Cg be the premise� whereM � catch v

M �� By the induction hypothesis� for some V ��

�� M ��
K�
x� �
CBV

V � and V � r C�

�� M ��
K�
x� �
CBV

C��throw v V �� and V � r C for some C� which does not capture v� or

� M ��
K�
x� �
CBV

C��throw uj V
��� V � r Bj and uj �� v� for some j and C� which does not

capture uj�

In the �rst case�

�catch v M ���
K�
x� � catch v M ��
K�
x� �
�
CBV

catch v V �
�
CBV

V ��

Therefore the �rst condition of De�nition ���� is satis�ed� In the second case� since C� does not

capture v�

�catch v M ���
K�
x� � catch v M ��
K�
x�
�
�

CBV
catch v C��throw v V ��

� or
�
CBV

catch v �throw v V ��

�
CBV

V ��

That is� the �rst condition is satis�ed also in this case� In the last case� let C be as C � catch v

C��
�catch v M ���
K�
x� � catch v M ��
K�
x�

�
�
CBV

catch v C��throw uj V
��

� C�throw uj V
���

Since uj �� v� C does not capture uj � Therefore the second condition of De�nition ���� is satis�ed

in this case� We now get � �� catch v M � ! �

�� A typing system for the catch and throw mechanism

Case �� The last rule is ���I �� Let ��fz �C�g �M
� �C� ! fg be the premise� where M � � z�M �

and C � C��C�� Let z
� be a fresh individual variable�

�� z�M ���
K�
x� � � z��M �z��z��
K�
x� � Val�

Assume that W r C�� By the induction hypothesis�

M �z��z��
K�
x��W�z�� �M �W�z��
K�
x� �
CBV

V � and V � r C��

That is� �� z�M ���
K�
x� r C��C��

Case �� The last rule is ���E �� Let � � M� �D�C ! and � � M� �D ! be the premises�

where M �M�M�� By the induction hypothesis on the �rst premise� for some V��

�� M��
K�
x� �
CBV

V� and V� r D�C� or

�� M��
K�
x� �
CBV

C��throw uj V�� and V� r Bj for some j �� � j � n� and C� which does not

capture uj�

In the �rst case� since V� r D�C� we can assume that V� � � z�N for some z and N � Therefore�

�M�M���
K�
x� � M��
K�
x�M��
K�
x� �
�
CBV

�� z�N �M��
K�
x�

On the other hand� by induction hypothesis on the second premise� for some V��

M��
K�
x� �
CBV

V� and V� r C� or

M��
K�
x� �
CBV

C���throw uj V�� and V� r Bj

for some j �� � j � n� and C�� which does not capture uj� Therefore� �M�M���
K�
x� �
�
CBV

�� z�N �V�
�
CBV

N �V��z� or �M�M���
K�
x� �
�
CBV

�� z�N � C�throw uj V��� Since � z�N r D�C

and V� r D� one of the two conditions of De�nition ���� is satis�ed� In the second case� let C be

as C � C�M��
K�
x��

�M�M���
K�
x� �
�
CBV

C��throw uj V��M��
K�
x� � C�throw uj V��

Since C does not capture uj� the second condition of De�nition ���� is satis�ed in this case�

Therefore� � �� M�M� ! holds�

Case �� The last rule is �	�I �� Let � �M � �C� ! �fv �C�g be the premise� where M � � v�M �

and C � C� 	C��

�� v�M ���
K�
x� � � v�M ��
K�
x��

By the induction hypothesis� for some V ��

�� M ��
K�
x� �
CBV

V � and V � r C��

�� M ��
K�
x� �
CBV

C��throw v V �� and V � r C� for some C� which does not capture v� or

� M ��
K�
x� �
CBV

C��throw uj V
��� V � r Bj and uj �� v� for some j and C� which does not

capture uj�

�� A realizability interpretation �

In the �rst case�

�� v�M ���
K�
x� � � v�M ��
K�
x� �
�
CBV

� v� V ��

and since V � r C�� we get � v� V
� r C� 	C�� Therefore� the �rst condition of De�nition ���� is

satis�ed� In the second case�

�� v�M ���
K�
x� � � v�M ��
K�
x�
�
�

CBV
� v� C��throw v V ��

� or
�
CBV

� v� throw v V ��

Since V � r C�� we get � v� throw v V � r C� 	C�� That is� the �rst condition is satis�ed also in

this case� In the third case� let C be as C � � v� C��

�� v�M ���
K�
x� � � v�M ��
K�
x�
�
�

CBV
� v� C��throw uj V

��

� C�throw uj V
���

Since uj �� v� C does not capture uj� Therefore the second condition is satis�ed� We now get

� �� � v�M � �C� 	C� ! �

Case �� The last rule is �	�E �� Let � �M � �C 	Bk !
� be the premise� where M �M � uk and

 � � � fuk �Bkg�

�M � uk��
K�
x� �M ��
K�
x�uk�

By the induction hypothesis� for some V ��

�� M ��
K�
x� �
CBV

� v� V � and V � r C for some v�

�� M ��
K�
x� �
CBV

� v� throw v V � and V � r Bk for some v� or

� M ��
K�
x� �
CBV

C��throw uj V
�� and V � r Bj for some j �� � j � n� and C� which does not

capture uj�

In the �rst case�

�M � uk��
K�
x� �M ��
K�
x�uk
�
�

CBV
�� v� V ��uk
�

CBV
V �

That is� the �rst condition of De�nition ���� is satis�ed in this case� In the second case�

�M � uk��
K�
x� �M ��
K�
x�uk
�
�

CBV
�� v� throw v V ��uk
�

CBV
throw uk V

�

Since V � r Bk� the second condition is satis�ed� In the third case� Let C be as C � C� uk�

�M � uk��
K�
x� �M ��
K�
x�uk
�
�

CBV
C��throw uj V

��uk � C�throw uj V
��

Since C does not capture uj� the second condition is satis�ed in this case� We now get � ��
M � uk �C ! �

Case ��� The last rule is one of the others� We get � ��M �C ! similarly�

Corollary ��� If fg �M �C ! fg is derivable in LCBV

c�t � then M �
CBV

V for some value V �

Proof� Straightforward from Theorem �����

Chapter �

The conventional implementation

In this section we imitate the standard implementation of the catch�throw mechanism by an

abstract stack machine� and give a realizability interpretation of the formal system in terms of

the abstract machine which is equivalent to the realizability de�ned in Section ���

��� De�nition of the machine

We design the machine only to illustrate how the catch�throw mechanism works� Other mech�

anisms required for the evaluation of terms remain abstract �cf� ���� ���� First� we extend the

syntax� The extended part is used by the machine internally�

De�nition ��� �Tag constants� We assume that a set Tconst which is a representation of

the set of natural numbers is given� Elements of Tconst are called tag constants� We use n to

denote the tag constant that represents a natural number n�

De�nition ��� �Tag�� We de�ne a set Tag� by

Tag� � � � Tconst j Tvar �

Elements of Tag� are called internal tags� We use t� t�� � � � to denote internal tags�

De�nition ��� �Val� and Term�� We de�ne two sets Val� and Term� � simultaneously� as

follows�

Val� � � � Const j �Var� Term� j �Val�� Val��

j inj�Val
� j inj�Val

�

j �Tvar�val Val� j �Tvar� throw Tvar �val Val��

Term� � � � Const j Var j val Val� j let Var�Term� � Term�

j throw Tag� Term� j catch Tvar Term�

j �Var� Term� j Term� Term�

j �Term� � Term�� j proj�Term
� j proj�Term

�

j inj�Term
� j inj� Term

� j case Term� Var� Term� Var� Term�

j � Tvar� Term� j Term� Tag� �

�� De�nition of the machine ��

where every element of Val� must be closed and must not have any occurrence of tag constants�

Elements of Val� are called internal values� We use Q� R� � � � to denote internal values� Elements

of Term� are called internal terms� We use e� f� g� � � � to denote internal terms� Note that if �x� e

is an internal value� then FIV �e� fxg and FTV �e� � fg since every internal value must be

closed�

Proposition ��� Val� Term� and Term Term��

Proof� Obvious from the de�nition�

We now have new terms such as val ��x� e�� throw e and e �� as internal terms as well as

ordinary terms�

De�nition ��� Let e be an internal term which does not have any occurrence of tag constants�

We assign a term e to e as follows�

c � c x � x

val e � e let x�e�� e� � let x�e�� e�
throw u e � throw u e catch u e � catch u e

�x� e � �x� e e� e� � e� e�
�e�� e�� � �e�� e�� proji e � proji e

inji e � inji e case e� x�e� y�e� � case e� x�e� y�e�
�u� e � �u� e e u � e u

That is� e is the term obtained from e by stripping all val
s occurring in e�

Proposition ��� Let e be a closed internal term� If e has no occurrence of tag constants� then

e is a closed term�

Proof� Straightforward induction on the structure of e�

Proposition ��� Q � Val for any internal value Q�

Proof� Straightforward induction on the structure of Q� Note that any internal value has no

occurrence of tag constants�

Proposition ��� Let M be a term� x�� � � � � xn individual variables� and Q�� � � � � Qn internal

values�

M �val Q��x�� � � � �val Qn�xn� �M �Q��x�� � � � � Qn�xn��

Proof� Straightforward induction on the structure of M �

De�nition ��
 �Seg� We de�ne a set Seg by

Seg � � � let Var��� Term� j throw Tag� � j catch Tvar �

j �Term� j Val� �

j ��� Term�� j �Val�� �� j proj� � j proj� �

j inj� � j inj� � j case � Var� Term� Var� Term�

j �Tvar� � j �Tvar� throw Tvar � j �Tag� �

where �Tvar� throw Tvar � must be closed� that is� the two tag variables are identical� Elements

of Seg are called context segments� We use S� S�� � � � to denote context segments�

�� The conventional implementation

The abstract machine has a stack� The state of the machine is determined only by this stack

state� We represent a stack state as follows�

bottom� � top

� S�� S�� S�� � � � � Sn� e ��

where S�� � � �� Sn are context segments and e is a closed internal term�

De�nition ���� A stack state � S�� S�� S�� � � � � Sn� e� is valid if S� � � �Sn are context

segments and e is a closed internal term�

De�nition ���� �Transition rules� The abstract machine changes its state according to the

following table� where
S denotes a sequence of context segments�

�
S � c � � �
S� val c�

�
S� let x�e�� e� � � �
S� let x��� e�� e� �

�
S� let x��� e�� val e� � � �
S� e��val e��x� �

�
S� throw t e � � �
S� throw t �� e �

� S�� � � � � Sn� Sn��� � � � � Sn�m�

throw n �� val e � � � S�� � � � � Sn� val e �

� S�� � � � � Sn� catch u e � � � S�� � � � � Sn� e�n�u� �

�
S� � x� e � � �
S� val ��x� e� �

�
S� e� e� � � �
S� � e�� e� �

�
S� � e�� val e� � � �
S� e� �� e� �

�
S � ��x� e�� �� val e� � � �
S� e��val e��x� �

�
S� �e�� e�� � � �
S� ��� e��� e� �

�
S � ��� e��� val e� � � �
S� �e�� ��� e� �

�
S � �e�� ��� val e� � � �
S� val �e�� e�� �

�
S� proj� e � � �
S� proj� �� e �

�
S� proj� �� val �e�� e�� � � �
S� val e� �

�
S� proj� e � � �
S� proj� �� e �

�
S� proj� �� val �e�� e�� � � �
S� val e� �

�
S� inj� e � � �
S� inj� �� e �

�
S� inj� �� val e � � �
S� val �inj� e� �

�
S� inj� e � � �
S� inj� �� e �

�
S� inj� �� val e � � �
S� val �inj� e� �

�
S� case e� x�e� y�e� � � �
S� case � x�e� y�e�� e� �

�
S� case � x�e� y�e�� val �inj� e�� � � �
S� e��val e��x� �

�
S� case � x�e� y�e�� val �inj� e�� � � �
S� e��val e��y� �

� S�� � � � � Sn� � u� e � � � S�� � � � � Sn� � u� throw u ��

throw n �� � u� �� e�n"��u� �

�� Validity of the machine ��

�
S � � u� �� val e � � �
S� val ��u�val e� �

�
S� � u� throw u �� val e � � �
S� val ��u� throw u �val e�� �

�
S� e t � � �
S� � t� e �

�
S� � t� val ��u� e� � � �
S� e�t�u� �

Let �
� be the transitive and re	exive closure of the relation ��

Example ����

� �catch u ��� z� e� �throw u ��x� x���� c �

� � � c� catch u ��� z� e� �throw u ��x� x��� �

� � � c� �� z� e� �throw � ��x� x�� �

� � � c� � �throw � ��x� x��� � z� e �

� � � c� � �throw � ��x� x��� val �� z� e� �

� � � c� �� z� e� �� throw � ��x� x� �

� � � c� �� z� e� �� throw � �� � x� x �

� � � c� �� z� e� �� throw � �� val ��x� x� �

� � � c� val ��x� x� �

� � ��x� x� �� c �

� � ��x� x� �� val c �

� � val c �

Note that when the stack is in a state � S�� S�� � � � � Sn��� Sn� e �� the composition S��S��� � �

�Sn���Sn�� � � ��� of the context segments represents the evaluation contexts of the internal term

e� i�e�� the continuation after the evaluation of e� The catch�throw mechanism of the machine

provides a restricted access to the continuation through tags� Observe that we need not any

explicit copying of evaluation contexts to provide the mechanism�

Proposition ���� Let � S�� � � � � Sm� e � be a valid stack state� If

� S�� � � � � Sm� e �� � S��� � � � � S
�
n� e

� ��

then � S��� � � � � S
�
n� e

� � is also valid�

Proof� Obvious from the de�nition of transition rules� Note that e is closed since the state is

valid�

De�nition ���� Let
S and
S � be sequences of context segments� and let e and e� be internal

terms� �
S�� e� � is a �nal state of �
S� e �� if �
S� e � �
� �
S �� e� � and no transition rule is

applicable to �
S�� e� ��

The rule applicable for a state is unique by the de�nition of the transition rules� Therefore� if

�e� �
� �val Q�� the internal value Q is unique�

��� Validity of the machine

In this subsection we discuss the validity of the abstract machine relative to the semantics given

in Section ������ We show that

�� The conventional implementation

�� M �
CBV

V implies �M � �
� � val Q � for some Q such that Q � V � and

�� �M � �
� � val Q � impliesM �

CBV
Q�

for any closed term M �

De�nition ��� Let e and e� be internal terms� and let S�� � � � �Sm and S��� � � � �S
�
n be sequences

of context segments� Let l be a natural number� We de�ne a relation �
l

by

�S�� � � � � Sm� e ��
l

�S��� � � � � S
�
n� e

� � i�

���
��
�S�� � � � � Sm� e �� �S��� � � � � S

�
n� e

� ��

l � m� n� and

Si � S �i �� � i � l��

Let
�
�
l

be the transitive and re	exive closure of the relation �
l

�

The relation � is equivalent to �
�
� and �

n
implies�

m
if m � n� Note that if �S�� � � � � Sm� e ��

l

�S��� � � � � S
�
n� e

� �� then this transition does not depend on S�� � � � � Sl�

De�nition ��� Let M be a term such that M �
CBV

N for some N � The rewriting path from

M to N is unique� We denote the length of the path by len�M ��

De�nition ��� Let M be a term� We de�ne jM j by

jcj � jxj � �

jlet x�M� N j � � "max�jM j� jN j�

jthrow u M j � jcatch u M j � j�x�M j � � " jM j

jM N j � j�M� N�j � � "max�jM j� jN j�

jproji M j � jinji M j � � " jM j

jcase L x�M y�N j � � "max�jLj� jM j� jN j�

j�x�M j � jM uj � � " jM j�

Theorem ��� Let
S be a sequence of context segments whose lengths is l� Let x�� � � � � xm
be individual variables� and R�� � � � � Rm internal values� Let u�� � � � � un be tag variables� and

k�� � � � � kn tag constants such that ki � l for any i� Let M be a term such that FIV �M �

fx�� � � � � xmg and FTV �M � fu�� � � � � ung� Let M �
R�
x� and M �val
R�
x�
k�
u� be abbreviations

for M �R��x�� � � � � Rm�xm� and M �val R��x�� � � � �val Rm�xm� k��u�� � � � � kn�un�� respectively�

�� If M �
R�
x� �
CBV

V � then

�
S� M �val
R�
x�
k�
u� �
�
�
l

�
S� val Q ��

for some internal value Q such that Q � V �

	� If M �
R�
x� �
CBV

C�throw uj V � for some j and C which does not capture uj� then

�
S � M �val
R�
x�
k�
u� �
�
�
l

�
S�
S�� throw kj �� val Q ��

for some sequence of context segments
S� and some internal value Q such that Q � V �

Proof� Induction on the lexicographic ordering of len�M �
R�
x�� and jM �
R�
x�j�

�� Validity of the machine ��

Case �� M is an individual constant� In this case M �
R�
x� � M � Therefore� we get V � M if

M �
R�
x� �
CBV

V � By the de�nition of transition rules�

�
S� M �val
R�
x�
k�
u� � � �
S� M ��
l

�
S � valM ��

Let Q be as Q � M � Then we get Q � V since M is an individual constant� Note that

M �
R�
x� ��
CBV

C�throw ui V ��

Case �� M is an individual variable� We getM �
R�
x� �M orM �
R�
x� � Ri for some i� Therefore

M �
R�
x� ��
CBV

C�throw uj V �� Suppose thatM �
R�
x� �
CBV

V � i�e��M � xi and Ri �
CBV

V � Since Ri

is a value� we get Ri � V � Let Q be as Q � Ri� Obviously �
S� M �val
R�
x�
k�
u� �
�
�
l

�
S� val Ri �

since M �val
R�
x�
k�
u� � val Ri�

Case �� M � let y�M�� M� for some y� M� and M�� We can assume y �� xi for any i�

First� suppose that M �
R�
x� �
CBV

V � By the de�nition of rewriting rules� M��
R�
x� �
CBV

V�

and M��
R�
x��V��y� �
CBV

V for some value V�� Note that len�M��
R�
x��� len�M��
R�
x��V��y�� �

len�M �
R�
x��� Therefore� for some internal values Q� and Q such that Q� � V� and Q � V �

�
S � �let y�M�� M���val
R�
x�
k�
u� �

�
l

�
S� let y��� M��val
R�
x�
k�
u�� M��val
R�
x�
k�
u� �
�
�
l

�
S� let y��� M��val
R�
x�
k�
u�� val Q� � �by ind� hyp��

�
l

�
S� M��val
R�
x�val Q��y�
k�
u� �
�
�
l

�
S� val Q � �by ind� hyp���

Next suppose that M �
R�
x� �
CBV

C�throw uj V �� By the de�nition of rewriting rules�

�� M��
R�
x� �
CBV

C��throw uj V � and C � let y�C�� M� for some C�� or

�� M��
R�
x� �
CBV

V� and M��
R�
x��V��x� �
CBV

C�throw uj V � for some value V��

In the �rst case� len�M��
R�
x�� � len�M �
R�
x�� and jM��
R�
x�j � jM �
R�
x�j� Therefore by the

induction hypothesis� for some
S� and Q such that Q � V �

�
S� �let y�M�� M���val
R�
x�
k�
u� �

�
l

�
S� let y��� M��val
R�
x�
k�
u�� M��val
R�
x�
k�
u� �
�
�
l

�
S� let y��� M��val
R�
x�
k�
u��
S�� throw kj �� val Q ��

In the second case� len�M��
R�
x��� len�M��
R�
x��V��x�� � len�M �
R�
y��� Therefore� for some
S��

Q� and Q such that Q� � V� and Q � V �

�
S � �let y�M�� M���val
R�
x�
k�
u� �

�
l

�
S� let y��� M��val
R�
x�
k�
u�� M��val
R�
x�
k�
u� �
�
�
l

�
S� let y��� M��val
R�
x�
k�
u�� val Q� � �by ind� hyp��

�
l

�
S� M��val
R�
x�val Q��y�
k�
u� �
�
�
l

�
S�
S�� throw kj �� val Q � �by ind� hyp���

�� The conventional implementation

Case �� M � throw v M � for some v and M �� Since M �
R�
x� ��
CBV

V � suppose that M �
CBV

C�throw uj V �� By the de�nition of rewriting rules�

�� M ��
R�
x� �
CBV

C��throw uj V � and C � throw v C� for some C�� or

�� M ��
R�
x� �
CBV

V and v � uj�

In the �rst case� len�M ��
R�
x�� � len�M �
R�
x�� and jM ��
R�
x�j � jM �
R�
x�j� Therefore by the

induction hypothesis� for some
S� and Q such that Q � V �

�
S� �throw v M ���val
R�
x�
k�
u� � � �
S� throw v�
k�
u�M ��val
R�
x�
k�
u� �

�
l

�
S� throw v�
k�
u� �� M ��val
R�
x�
k�
u� �
�
�
l

�
S� throw v�
k�
u� ��
S�� throw kj �� val Q��

Similarly in the second case� for some Q such that Q � V �

�
S� �throw v M ���val
R�
x�
k�
u� � � �
S� throw kj M
��val
R�
x�
k�
u� �

�
l

�
S� throw kj �� M
��val
R�
x�
k�
u� �

�
�
l

�
S� throw kj �� val Q ��

by the induction hypothesis�

Case �� M � catch v M � for some v and M �� We can assume that v �� ui for any i� First�

suppose that M �
R�
x� �
CBV

V � By the de�nition of rewriting rules�

�� M ��
R�
x� �
CBV

V � or

�� M ��
R�
x� �
CBV

C��throw v V � for some C� which does not capture v�

In the �rst case� since len�M ��
R�
x�� � len�M �
R�
x��� by the induction hypothesis� for some Q

such that Q � V �

�
S� �catch v M ���val
R�
x�
k�
u� � � �
S � catch v M ��val
R�
x�
k�
u� �

�
l

�
S � M ��val
R�
x�
k�
u� l�v� �
�
�
l

�
S � val Q ��

Similarly in the second case� since len�M ��
R�
x�� � len�M �
R�
x���

�
S� �catch v M ���val
R�
x�
k�
u� � � �
S � catch v M ��val
R�
x�
k�
u� �

�
l

�
S � M ��val
R�
x�
k�
u� l�v� �
�
�
l

�
S �
S�� throw l �� val Q �

�
l

�
S � val Q �

for some
S� and Q such that Q � V �

Next suppose that M �
R�
x� �
CBV

C�throw uj V �� Since C�throw uj V � is not a value�

M ��
R�
x� �
CBV

C��throw uj V � and C � catch v C� for some C�� Since len�M ��
R�
x�� �

�� Validity of the machine ��

len�M �
R�
x�� and jM ��
R�
x�j � jM �
R�
x�j�

�
S� �catch v M ���val
R�
x�
k�
u� � � �
S� catch v M ��val
R�
x�
k�
u� �

�
l

�
S� catch v �� M ��val
R�
x�
k�
u� l�v� �
�
�
l

�
S� catch v ��
S �� throw kj �� val Q �

for some
S� and Q such that Q � V by the induction hypothesis�

Case �� M � � v�M � for some v and M �� We can assume that v �� ui for any i� First� suppose

that M �
R�
x� �
CBV

V � By the de�nition of rewriting rules� for some V ��

�� M ��
R�
x� �
CBV

V � and V � � v� V �� or

�� M ��
R�
x� �
CBV

C��throw v V �� and V � � v� throw v V � for some C� which does not capture

v�

In the �rst case� len�M ��
R�
x�� � len�M �
R�
x�� and jM ��
R�
x�j � jM �
R�
x�j� Therefore by the

induction hypothesis� for some Q� such that Q
�
� V ��

�
S� �� v�M ���val
R�
x�
k�
u� �

� �
S � � v�M ��val
R�
x�
k�
u� �

�
l

�
S � � v� throw v �� throw l �� � v� �� M ��val
R�
x�
k�
u� l"��v� �
�
�
l

�
S � � v� throw v �� throw l �� � v� �� val Q� �

�
l

�
S � � v� throw v �� throw l �� val �� v�val Q�� �

�
l

�
S � val �� v�val Q�� ��

Let Q be as Q � � v�val Q�� Then we get Q � � v�Q
�
� � v� V � � V � In the second case�

len�M ��
R�
x�� � len�M �
R�
x�� and jM ��
R�
x�j � jM �
R�
x�j� Therefore�

�
S� �� v�M ���val
R�
x�
k�
u� �

�
l

�
S � � v� throw v �� throw l �� � v� �� M ��val
R�
x�
k�
u� l"��v� �
�
�
l

�
S � � v� throw v �� throw l �� � v� ��
S��� throw l"� �� val Q� �

�
l

�
S � � v� throw v �� val Q� �

�
l

�
S � val �� v� throw v �val Q��� �

for some
S�� and Q� such that Q
�
� V � by the induction hypothesis� Let Q be as Q � � v� throw v

�val Q��� Then we get Q � � v� throw v Q
�
� � v� throw v V � � V �

Next suppose that M �
R�
x� �
CBV

C�throw uj V �� By the de�nition of rewriting rules� there

exists some C� such that M ��
R�
x� �
CBV

C��throw uj V � and C � � v� C�� Note that C� does not

capture uj� Since len�M
��
R�
x�� � len�M �
R�
x�� and jM ��
R�
x�j � jM �
R�
x�j�

�
S� �� v�M ���val
R�
x�
k�
u� �

�
l

�
S � � v� throw v �� throw l �� � v� �� M ��val
R�
x�
k�
u� l"��v� �
�
�
l

�
S � � v� throw v �� throw l �� � v� ��
S��� throw kj �� val Q �

for some
S�� and Q such that Q � V by the induction hypothesis�

�� The conventional implementation

Case �� M � M �v for some M � and v� First� suppose that M �
R�
x� �
CBV

V � By the de�nition

of rewriting rules� for some w�

M ��
R�
x� �
CBV

�w� V�

Since len�M ��
R�
x�� � len�M �
R�
x��� by the induction hypothesis� for some Q such that Q � V �

�
S� �M �v��val
R�
x�
k�
u� � � �
S � M ��val
R�
x�
k�
u� v�
k�
u� �

�
l

�
S � �v�
k�
u�� M ��val
R�
x�
k�
u� �
�
�
l

�
S � �v�
k�
u�� val ��w�val Q� �

�
l

�
S � �val Q��v�
k�
u��w� �

� �
S � val Q ��

Next suppose that M �
R�
x� �
CBV

C�throw uj V �� By the de�nition of rewriting rules�

�� M ��
R�
x� �
CBV

C��throw uj V � and C � C�v for some C�� or

�� M ��
R�
x� �
CBV

�w� throw w V for some w and v � uj�

In the �rst case� len�M ��
R�
x�� � len�M �
R�
x�� and jM ��
R�
x�j � jM �
R�
x�j� Therefore�

�
S� �M �v��val
R�
x�
k�
u� �

�
l

�
S� � v�
k�
u�� M ��val
R�
x�
k�
u� �
�
�
l

�
S� � v�
k�
u��
S �� throw kj �� val Q �

for some
S� and Q such that Q � V by the induction hypothesis� Similarly in the second case�

�
S� �M �v��val
R�
x�
k�
u� � � �
S� M ��val
R�
x�
k�
u� kj �

�
l

�
S� � kj� M ��val
R�
x�
k�
u� �
�
�
l

�
S� � kj� val ��w� throw w �val Q�� �

�
l

�
S� throw kj �val Q� �

�
l

�
S� throw kj �� val Q ��

Case �� M � � y�M � for some y andM �� SinceM �
R�
x� �
CBV

� y� �M ��
R�
x��� we getM �
R�
x� ��
CBV

C�throw uj V �� Suppose that M �
R�
x� �
CBV

V � i�e�� V � � y� �M ��
R�
x��� Since FTV �� y�M �� �

fg� we get �� y�M ���val
R�
x�
k�
u� � � y� �M ��val
R�
x��� Therefore� �
S� M �val
R�
x�
k�
u� � �
l

�
S� val Q �� where Q � � y� �M ��val
R�
x��� and Q � � y� �M ��
R�
x�� by Proposition �����

Case
� M has one of other forms� Similar�

Lemma ��� Let
S be a sequence of context segments whose length is l� and let e be an internal

term� If �
S� e �
�
�
l

�
S�
S�� e� � for some
S � and e�� then for any tag constant m occurring in
S�

or e�� m � l implies that m occurs in e�

Proof� By induction on the length of the path of �
S� e �
�
�
l

�
S�
S�� e� �� Each step is obvious

from the de�nition of transition rules�

�� Validity of the machine �

Lemma ��� Let
S be a sequence of context segments whose length is l� Let u�� � � � � un be

tag variables� and k�� � � � � kn tag constants� Let M be a term such that FIV �M � � fg and

FTV �M � fu�� � � � � ung� If

�
S� M �k��u�� � � � � kn�un� �
�
� �
S �� e �

for some S� and e� then

�� �
S� M �k��u�� � � � � kn�un� �
�
�
l

�
S�� e ��

	� �
S� M �k��u�� � � � � kn�un� �
�
�
l

�
S� val Q � for some Q� or

� �
S� M �k��u�� � � � � kn�un� �
�
�
l

�
S� � � � � throw kj �� val Q � and kj � l for some Q and j�

Proof� Assume that �
S� M �k��u�� � � � � kn�un� � �
�
�
l

�
S�� e �� and let �
S��� e� � be the ��

nal state of �
S� M �k��u�� � � � � kn�un� � w�r�t� �
l

� which is not a �nal state w�r�t� � since

�
S� M �k��u�� � � � � kn�un� �
�
� �
S�� e �� Therefore� a transition rule is applicable to the state� By

the de�nition of transition rules�

�� �
S��� e� � � �
S� val Q � for some Q� or

�� �
S��� e� � � �
S� � � � � throw m �� val Q � for some Q and m such that m � l�

We get m � kj for some j by Lemma ���� in the latter case�

Lemma ��� Let
S and
S� be sequences of context segments whose lengths are l and m� respec�

tively� Let u�� � � � � un be tag variables� and k�� � � � � kn tag constants� Let M be a term such that

FIV �M � � fg and FTV �M � fu�� � � � � ung� If

�
S�
S�� M �k��u�� � � � � kn�un� �
�
� �
S � val Q �

for some Q� then

�� �
S�
S�� M �k��u�� � � � � kn�un� �
�
�
l�m
�
S �
S�� val Q� � for some Q�� or

	� �
S �
S�� M �k��u�� � � � � kn�un� �
�
�
l�m
�
S�
S�� � � � � throw kj �� val Q� � and l � kj � l " m

for some Q� and j�

Proof� Suppose that �
S�
S�� M �k��u�� � � � � kn�un� �
�
� �
S� val Q �� By Lemma �����

�� �
S�
S�� M �k��u�� � � � � kn�un� �
�
�
l�m
�
S � val Q ��

�� �
S�
S�� M �k��u�� � � � � kn�un� �
�
�
l�m
�
S �
S�� val Q� � for some Q�� or

� �
S�
S�� M �k��u�� � � � � kn�un� �
�
�
l�m

�
S�
S�� � � � � throw kj �� val Q
� � and kj � l " m for

some Q� and j�

In the �rst case� we get m � � by the de�nition of �
�
l�m
� Therefore� �
S� val Q � � �
S�
S�� val Q ��

Trivial in the second case� In the third case� it is enough to show that l � kj� Since �
S � val Q �

is a �nal state w�r�t� �
l

� we get that �
S �
S�� � � � � throw kj �� val Q
� � is not a �nal state w�r�t�

�
l

� Therefore we get l � kj�

�� The conventional implementation

Lemma ��� Let
S be a sequence of context segments whose length is l� Let u�� � � � � un be

tag variables� and k�� � � � � kn tag constants� Let M be a term such that FIV �M � � fg and

FTV �M � fu�� � � � � ung� If �
S � M �k��u�� � � � � kn�un� �
�
� �
S�� throw q �� val Q � for some

S�� Q and q such that q � l� then

�� �
S� M �k��u�� � � � � kn�un� �
�
�
l

�
S� val Q� � for some Q�� or

	� �
S� M �k��u�� � � � � kn�un� �
�
�
l

�
S� � � � � throw q �� val Q ��

Proof� Suppose that �
S � M �k��u�� � � � � kn�un� �
�
� �
S�� throw q �� val Q � and q � l� By

Lemma �����

�� �
S� M �k��u�� � � � � kn�un� �
�
�
l

�
S�� throw q �� val Q ��

�� �
S� M �k��u�� � � � � kn�un� �
�
�
l

�
S� val Q� � for some Q�� or

� �
S� M �k��u�� � � � � kn�un� �
�
�
l

�
S� � � � � throw kj �� val Q� � and kj � l for some Q� and j�

In the �rst case� let m be the length of
S�� Trivial if l � m� Otherwise we get �
S�� throw q

�� val Q � � �
S � val Q � from the de�nition of �
l

� Trivial in the the second case� In the

third case� since kj � l� �
S� � � � � throw kj �� val Q� � is a �nal state w�r�t� �
l

as well as

�
S� � � � � throw q �� val Q �� Therefore� kj � q and Q� � Q�

Theorem ��
 Let
S be a sequence of context segments whose lengths is l� Let x�� � � � � xm
be individual variables� and R�� � � � � Rm internal values� Let u�� � � � � un be tag variables� and

k�� � � � � kn tag constants such that ki � l for any i� Let M be a term such that FIV �M �

fx�� � � � � xmg and FTV �M � fu�� � � � � ung� Let M �
R�
x� and M �val
R�
x�
k�
u� be abbreviations

for M �R��x�� � � � � Rm�xm� and M �val R��x�� � � � �val Rm�xm� k��u�� � � � � kn�un�� respectively�

Let Q be an internal value�

�� If �
S� M �val
R�
x�
k�
u� �
�
�
l

�
S� val Q �� then

M �
R�
x� �
CBV

Q or M �
R�
x� �
CBV

C�throw uj Q�

for some j and C such that kj � l and C does not capture uj�

	� If �
S� M �val
R�
x�
k�
u� �
�
�
l

�
S� � � � � throw q �� val Q � for some q such that q � l� then

M �
R�
x� �
CBV

C�throw uj Q�

for some j and C such that q � kj and C does not capture uj�

Proof� By induction on the lengths of the following transition paths�

�
S� M �val
R�
x�
k�
u� �
�
�
l

�
S� val Q � ����

�
S� M �val
R�
x�
k�
u� �
�
�
l

�
S� � � � � throw q �� val Q � ����

By cases according to the form of M �

�� Validity of the machine ��

Case �� M is an individual constant� Trivial since �
S � M �val
R�
x�
k�
u� � � �
S� M � �
l

�
S� valM � and M �
CBV

M �M �

Case �� M is an individual variable� Suppose that

�
S� M �val
R�
x�
k�
u� �
�
�
l

�
S � � � � � val Q ��

Since M � xi for some i� we get M �val
R�
x�
k�
u� � val Ri� That is� �
S� M �val
R�
x�
k�
u� � is

a �nal state w�r�t� �
l

� Therefore ���� does not hold� Suppose that ���� holds� In this case�

Q � Ri� Therefore� M �
R�
x� � Ri �
CBV

Ri � Q�

Case �� M � let y�M�� M� for some y� M� and M�� We can assume that y �� xi for any i�

Let Sl�� be as Sl�� � let y��� M��val
R�
x�
k�
u�� By the de�nition of transition rules�

�
S� �let y�M�� M���val
R�
x�
k�
u� �

� �
S� let y�M��val
R�
x�
k�
u�� M��val
R�
x�
k�
u� �

�
l

�
S� Sl��� M��val
R�
x�
k�
u� ��

First� suppose ����� i�e�� �
S� Sl��� M��val
R�
x�
k�
u� �
�
�
l

�
S � val Q �� By Lemma �����

�� �
S� Sl��� M��val
R�
x�
k�
u� �
�
�
l��
�
S� Sl��� val Q

� � for some Q�� or

�� �
S � Sl��� M��val
R�
x�
k�
u� �
�
�
l��
�
S � Sl��� � � � � throw ki �� val Q

� � and ki � l for some

Q� and i�

In the �rst case� since kj � l " � for any j� we get M��
R�
x� �
CBV

Q
�
by the induction hypothesis�

On the other hand�

�
S � M �val
R�
x�
k�
u� � �
l

�
S � Sl��� M��val
R�
x�
k�
u� �
�
�
l��

�
S � Sl��� val Q
� �

�
l

�
S � M��val
R�
x�val Q
��y�
k�
u� ��

Therefore� we get �
S � M��val
R�
x�val Q��y�
k�
u� �
�
�
l

�
S � val Q � by ����� By the induction

hypothesis again� we get M��
R�
x�Q
�
�y� �

CBV
Q or M��
R�
x�Q

�
�y� �

CBV
C�throw uj Q� for some j

and C such that kj � l and C does not capture uj� That is�

M �
R�
x� � let y�M��
R�
x�� M��
R�
x�
�
�

CBV
let y�Q

�
� M��
R�
x�

�
CBV

M��
R�
x�Q
�
�y�

�
CBV

Q or C�throw uj Q��

In the second case�

�
S � M �val
R�
x�
k�
u� � �
l

�
S� Sl��� M��val
R�
x�
k�
u� �
�
�
l��

�
S� Sl��� � � � � throw l �� val Q� �

�
l

�
S� val Q� ��

�� The conventional implementation

Since �
S � val Q� � is a �nal state w�r�t �
l

� we get Q� � Q from ����� That is�

�
S� Sl��� M��val
R�
x�
k�
u� �
�
�
l��
�
S� Sl��� � � � � throw l �� val Q ��

By the induction hypothesis� we get M��
R�
x� �
CBV

C��throw uj Q� for some j and C
� such that

l � kj and C� does not capture uj � Therefore�

M �
R�
x� � let y�M��
R�
x�� M��
R�
x�
�
�

CBV
let y�C��throw uj Q�� M��
R�
x�

� C�throw uj Q��

where C � let y�C�� M��
R�
x�� which does not capture uj �

Next suppose that q � l and ����� i�e��

�
S� M �val
R�
x�
k�
u� � �
l

�
S � Sl��� M��val
R�
x�
k�
u� �
�
�
l

�
S � � � � � throw q �� val Q ��

By Lemma �����

�� �
S� Sl��� M��val
R�
x�
k�
u� �
�
�
l��
�
S� Sl��� val Q� � for some Q�� or

�� �
S� Sl��� M��val
R�
x�
k�
u� �
�
�
l��
�
S� Sl��� � � � � throw q �� val Q ��

In the �rst case� since kj � l " � for any j� we get M��
R�
x� �
CBV

Q
�
by the induction hypothesis�

On the other hand�

�
S� M �val
R�
x�
k�
u� �
�
�
l

�
S � Sl��� val Q� �

�
l

�
S � M��val
R�
x�val Q
��y�
k�
u� ��

Therefore� �
S� M��val
R�
x�val Q��y�
k�
u� �
�
�
l

�
S � � � � � throw q �� val Q � by ����� By

the induction hypothesis� we get M��
R�
x�Q�y� �
CBV

C�throw uj Q� for some j and C such that

q � kj and C does not capture uj� Therefore�

M �
R�
x� � let y�M��
R�
x�� M��
R�
x�
�
�

CBV
let y�Q

�
� M��
R�
x�

�
CBV

M��
R�
x�Q
�
�y�

�
CBV

C�throw uj Q��

In the second case� we get M��
R�
x� �
CBV

C��throw uj Q� for some j and C
� such that q � kj and

C� does not capture uj� by the induction hypothesis� Therefore�

M �
R�
x� � let y�M��
R�
x�� M��
R�
x�

�
CBV

let y�C��throw uj Q�� M��
R�
x�

� C�throw uj Q��

where C � let y�C�� M��
R�
x�� which does not capture uj �

�� Validity of the machine ��

Case �� M � throw v M � for some v and M �� Since FTV �M � fu�� � � � � ung� we get v � up
for some p� Let Sl�� be as Sl�� � throw kp �� By the de�nition of transition rules�

�
S� �throw v M ���val
R�
x�
k�
u� � � �
S� throw kp M
��val
R�
x�
k�
u� �

�
l

�
S� Sl��� M
��val
R�
x�
k�
u� ��

First� suppose ����� i�e�� �
S� Sl��� M
��val
R�
x�
k�
u� �

�
�
l

�
S� val Q �� By Lemma �����

�� �
S� Sl��� M ��val
R�
x�
k�
u� � �
�
l��
�
S� Sl��� val Q� � for some Q�� or

�� �
S � Sl��� M
��val
R�
x�
k�
u� � �

�
l��
�
S� Sl��� � � � � throw ki �� val Q

� � and ki � l for some

Q� and i�

In the �rst case� since kj � l " � for any j� we get M ��
R�
x� �
CBV

Q
�
by the induction hypothesis�

Therefore�

M �
R�
x� � throw up M
��
R�
x� �

CBV
throw up Q

�
�

On the other hand� �
S� Sl��� val Q� �
�
�
l

�
S� val Q � by ����� Therefore� we get kp � l and

Q � Q�� In the second case� since ki � l�

�
S � M �val
R�
x�
k�
u� � �
l

�
S� Sl��� M
��val
R�
x�
k�
u� �

�
�
l��

�
S� Sl��� � � � � throw l �� val Q� �

�
l

�
S� val Q� ��

Therefore� Q� � Q by ����� i�e��

�
S� Sl��� M
��val
R�
x�
k�
u� � �

�
l��
�
S � Sl��� � � � � throw l �� val Q ��

By the induction hypothesis� we get M ��
R�
x� �
CBV

C��throw uj Q� for some j and C� such that

l � kj and C� does not capture uj � Therefore�

M �
R�
x� � throw up M
��
R�
x�

�
�
CBV

throw up C
��throw uj Q�

� C�throw uj Q��

where C � throw up C�� which does not capture uj�

Next suppose that q � l and ����� i�e��

�
S� M �val
R�
x�
k�
u� � �
l

�
S � Sl��� M
��val
R�
x�
k�
u� �

�
�
l

�
S � � � � � throw q �� val Q ��

By Lemma �����

�� �
S� Sl��� M
��val
R�
x�
k�
u� � �

�
l��
�
S� Sl��� val Q

� � for some Q�� or

�� �
S� Sl��� M ��val
R�
x�
k�
u� � �
�
l��
�
S� Sl��� � � � � throw q �� val Q ��

�� The conventional implementation

In the �rst case� since kj � l " � for any j� we get M ��
R�
x� �
CBV

Q
�
by the induction hypothesis�

Therefore�

M �
R�
x� � throw up M
��
R�
x� �

CBV
throw up Q

�
�

On the other hand� �
S� Sl��� val Q
� �

�
�
l

�
S � � � � � throw q �� val Q � by ����� Therefore we

get q � kp and Q� � Q� In the second case� we get M ��
R�
x� �
CBV

C��throw uj Q� for some j and

C� such that q � kj and C� does not capture uj� by the induction hypothesis� Therefore�

M �
R�
x� � throw up M
��
R�
x�

�
CBV

throw up C
��throw uj Q�

� C�throw uj Q��

where C � throw up C
�� which does not capture uj�

Case �� M � catch v M � for some v and M �� We can assume that v �� ui for any i� By the

de�nition of transition rules�

�
S� �catch v M ���val
R�
x�
k�
u� � � �
S � catch v M ��val
R�
x�
k�
u� �

�
l

�
S � M ��val
R�
x�
k�
u� l�v� ��

First� suppose ����� i�e�� �
S� M ��val
R�
x�
k�
u� l�v� �
�
�
l

�
S� val Q �� By the induction hypothesis�

�� M ��
R�
x� �
CBV

Q�

�� M ��
R�
x� �
CBV

C��throw uj Q� and kj � l for some j and C� which does not capture uj � or

� M ��
R�
x� �
CBV

C��throw v Q� for some C� which does not capture v�

In the �rst case�

M �
R�
x� �
�
CBV

catch v Q �
CBV

Q�

In the second case�

M �
R�
x� �
CBV

catch v C��throw uj Q� � C�throw uj Q��

where C � catch v C�� which does not capture uj� In the third case�

M �
R�
x� �
�
CBV

catch v C��throw v Q� �
�
CBV

catch v �throw v Q�
�
CBV

Q�

Next suppose that q � l and ����� i�e��

�
S� M �val
R�
x�
k�
u� � �
l

�
S � M ��val
R�
x�
k�
u� l�v� �
�
�
l

�
S � � � � � throw q �� val Q ��

By the induction hypothesis� M ��
R�
x� �
CBV

C��catch uj Q� and kj � q for some j and C� which

does not capture uj � Therefore�

M �
R�
x� �
CBV

catch v C��throw uj Q� � C�throw uj Q��

where C � catch v C�� which does not capture uj�

�� Validity of the machine ��

Case �� M � � v�M � for some v and M �� We can assume that v �� ui for any i� By the

de�nition of transition rules�

�
S� �� v�M ���val
R�
x�
k�
u� �

� �
S� � v�M ��val
R�
x�
k�
u� �

�
l

�
S� � v� throw v �� throw l �� � v� �� M ��val
R�
x�
k�
u� l"��v� ��

Let
S� be as
S� � � v� throw v �� throw l �� � v� �� First� suppose ����� i�e�� �
S�
S��

M ��val
R�
x�
k�
u� l"��v� �
�
�
l

�
S� val Q �� By Lemma �����

�� �
S�
S�� M ��val
R�
x�
k�
u� l"��v� � �
�
l��
�
S�
S�� val Q� � for some Q��

�� �
S �
S�� M ��val
R�
x�
k�
u� l"��v� � �
�
l��
�
S �
S�� � � � � throw ki �� val Q

� � and ki � l for

some Q� and i� or

� �
S�
S�� M ��val
R�
x�
k�
u� l"��v� � �
�
l��
�
S�
S�� � � � � throw l"� �� val Q� � and for some Q��

In the �rst case� since l " �� kj � l " for any j� we get M ��
R�
x� �
CBV

Q
�
by the induction

hypothesis� Therefore�

M �
R�
x� � � v�M ��
R�
x� �
CBV

� v�Q
�
�

On the other hand�

�
S�
S�� val Q� � � �
S � � v� throw v �� throw l �� � v� �� val Q� �

�
l

�
S � � v� throw v �� throw l �� val �� v�val Q�� �

�
l

�
S � val �� v�val Q�� ��

Therefore� we get Q � � v�val Q� by ����� i�e�� Q � � v�Q
�
� In the second case�

�
S� M �val
R�
x�
k�
u� � �
l

�
S�
S�� M ��val
R�
x�
k�
u� l"��v� �
�
�
l��

�
S�
S�� � � � � throw l �� val Q� �

�
l

�
S� val Q� ��

Therefore Q� � Q by ����� and

�
S�
S�� M ��val
R�
x�
k�
u� l"��v� � �
�
l��

�
S�
S�� � � � � throw l �� val Q ��

By the induction hypothesis� we get M ��
R�
x� �
CBV

C��throw uj Q� for some j and C
� such that

l � kj and C� does not capture uj � That is�

M �
R�
x� � � v�M ��
R�
x�
�
�

CBV
� v� C��throw uj Q�

� C�throw uj Q��

where C � � v� C�� which does not capture uj� In the third case� by the induction hypothesis� we

get M ��
R�
x� �
CBV

C��throw v Q
�
� for some C� which does not capture v� Therefore�

M �
R�
x� � � v�M ��
R�
x�
�
�

CBV
� v� C��throw v Q

�
�

�
CBV

� v� throw v Q
�
�

�� The conventional implementation

On the other hand�

�
S� M �val
R�
x�
k�
u� �

�
l

�
S �
S�� M ��val
R�
x�
k�
u� l"��v� �
�
�
l��

�
S � � v� throw v �� throw l �� � v� �� � � � � throw l"� �� val Q� �

�
l

�
S � � v� throw v �� val Q� �

�
l

�
S � val �� v� throw v val Q�� ��

Therefore we get Q � � v� throw v �val Q�� by ����� i�e�� Q � � v� throw v Q
�
�

Next� suppose that q � l and ����� i�e��

�
S� M �val
R�
x�
k�
u� � �
l

�
S�
S�� M ��val
R�
x�
k�
u� l"��v� �
�
�
l

�
S� � � � � throw q �� val Q ��

By Lemma �����

�� �
S�
S�� M ��val
R�
x�
k�
u� l"��v� � �
�
l��
�
S�
S�� val Q� � for some Q�� or

�� �
S�
S�� M ��val
R�
x�
k�
u� l"��v� � �
�
l��
�
S�
S�� � � � � throw q �� val Q ��

We need not consider the �rst case� because in this case�

�
S� M �val
R�
x�
k�
u� �

�
l

�
S �
S�� M ��val
R�
x�
k�
u� l"��v� �
�
�
l��

�
S � � v� throw v �� throw l �� � v� �� � � � � throw l"� �� val Q� �

�
l

�
S � � v� throw v �� val Q� �

�
l

�
S � val �� v� throw v �val Q��� ��

and this contradicts ����� In the second case� we get M ��
R�
x� �
CBV

C��throw uj Q� for some j

and C such that q � kj and C� does not capture uj by the induction hypothesis� Therefore�

M �
R�
x� �
CBV

� v� C��throw uj Q� � C�throw uj Q��

where C � � v� C�� which does not capture uj�

Case �� M �M �v for some M � and v� Since FTV �M � fu�� � � � � ung� we get v � up for some

p� By the de�nition of transition rules�

�
S� �M �v��val
R�
x�
k�
u� � � �
S� M ��val
R�
x�
k�
u� kp �

�
l

�
S� � kp� M ��val
R�
x�
k�
u� ��

First� suppose ����� i�e�� �
S� � kp� M
��val
R�
x�
k�
u� �

�
�
l

�
S� val Q �� By Lemma �����

�� �
S� � kp� M
��val
R�
x�
k�
u� � �

�
l��
�
S � �kp� val Q

� � for some Q�� or

�� �
S� � kp� M ��val
R�
x�
k�
u� � �
�
l��
�
S � �kp� � � � � throw ki �� val Q� � and ki � l for some Q�

and i�

�� Validity of the machine ��

In the �rst case� since kj � l " � for any j� we get M ��
R�
x� �
CBV

Q
�
by the induction hypothesis�

Therefore�

M �
R�
x� � M ��
R�
x�up
�
�

CBV
Q
�
up�

On the other hand� we get Q� � �w� e for some w and e from ����� Moreover� since Q� is an

internal value� for some Q���

�a� Q� � �w�val Q��� or

�b� Q� � �w� throw w �val Q����

In the case of �a�

�
S� �kp� val Q� � � �
S� � kp� val ��w�val Q��� � �
l

�
S� val Q�� ��

We so get Q � Q�� from ����� Therefore Q
�
� �w�Q� and

M �
R�
x� �
�
CBV

Q
�
up � ��w�Q�up �

CBV
Q�

In the case of �b�

�
S� � kp� val Q
� � � �
S� � kp� val ��w� throw w �val Q���� �

�
l

�
S� throw kp �val Q��� �

�
l

�
S� throw kp �� val Q
�� ��

We so get kp � l and Q�� � Q from ����� Therefore Q
�
� �w� throw w Q� and

M �
R�
x� �
�
CBV

Q
�
up� � ��w� throw w Q�up �

CBV
throw up Q�

In the second case�

�
S� M �val
R�
x�
k�
u� � �
l

�
S� � kp� M ��val
R�
x�
k�
u� �
�
�
l��

�
S� � kp� � � � � throw l �� val Q� �

�
l

�
S� val Q� ��

We so get Q� � Q from ����� Therefore�

�
S� � kp� M ��val
R�
x�
k�
u� � �
�
l��

�
S � �kp� � � � � throw l �� val Q ��

By the induction hypothesis� we get M ��
R�
x� �
CBV

C��throw uj Q� for some j and C
� such that

l � kj and C� does not capture uj � That is�

M �
R�
x� � M ��
R�
x� kp
�
�

CBV
C��throw uj Q� kp

� C�throw uj Q��

where C � C� kp� which does not capture uj�

Next� suppose that q � l and ����� i�e��

�
S� M �val
R�
x�
k�
u� � �
l

�
S � �kp� M
��val
R�
x�
k�
u� �

�
�
l

�
S � � � � � throw q �� val Q ��

By Lemma �����

�� The conventional implementation

�� �
S� � kp� M
��val
R�
x�
k�
u� � �

�
l��
�
S � �kp� val Q

� � for some Q�� or

�� �
S� � kp� M ��val
R�
x�
k�
u� � �
�
l��
�
S � �kp� � � � � throw q �� val Q ��

In the �rst case� since kj � l " � for any j� we get M ��
R�
x� �
CBV

Q
�
by the induction hypothesis�

Therefore�

M �
R�
x� � M ��
R�
x�up
�
�

CBV
Q
�
up�

On the other hand� �
S� � kp� val Q
� �

�
�
l

�
S � � � � � throw q �� val Q � by ����� Therefore� we

get Q� � �w� throw w �val Q� for some w and q � kp� That is� Q
�
� �w� throw w Q and

M �
R�
x� �
�
CBV

Q
�
up

� ��w� throw w Q�up
�
CBV

throw up Q�

In the second case� we get M ��
R�
x� �
CBV

C��throw uj Q� for some j and C such that q � kj and

C� does not capture uj� by the induction hypothesis� Therefore�

M �
R�
x� � M ��
R�
x�up
�
CBV

C��throw uj Q�up
� C�throw uj Q��

where C � C� up� which does not capture uj�

Case �� M � � y�M � for some y and M �� Note that M �
R�
x� �
CBV

� y� �M ��
R�
x��� Since

FTV ��x�M �� � fg� we get M �val
R�
x�
k�
u� � � y� �M �val
R�
x��� Therefore� by the de�nition of

transition rules�

�
S� M �val
R�
x�
k�
u� ��
l

�
S � val �� y� �M ��val
R�
x��� ��

So ���� does not hold� Suppose ����� i�e�� Q � � y� �M ��val
R�
x��� We get Q � � y� �M ��
R�
x��

by Proposition �����

Case
� M has one of other forms� Similar�

Corollary ���� Let M be a closed term� Let V and Q be a value and an internal value�

respectively�

�� M �
CBV

V implies �M � �
� � val Q � for some Q such that Q � V � and

	� �M � �
� � val Q � implies M �

CBV
Q�

Proof� Straightforward from Theorem ���� and Theorem �����

�� Realizability by the abstract machine �

��� Realizability by the abstract machine

We can give another realizability interpretation of the formal system in terms of the abstract

machine�

Theorem ��� The relation

fx� �A�� � � � � xm �Amg ��M �C ! fu� �B�� � � � � un �Bng

holds if and only if for any closed terms K�� � � � �Km such that � Ki �
�
� � val Ri � and Ri r Ai for

some Ri �� � i � m�� for any context segments S�� � � � � Sl� and for any tag constants k�� � � � � kn
such that kj � l for any j�

�� � S�� � � � � Sl� M �
K�
x�
k�
u� �
�
�
l

� S�� � � � � Sl� val Q � and Q r C for some Q� or

	� � S�� � � � � Sl� M �
K�
x�
k�
u� �
�
�
l

� S�� � � � � Sl� � � � � throw kj �� val Q� and Q r Bj for

some j and Q�

where the term M �
K�
x�
k�
u� stands for M �K��x�� � � � �Km�xm� k��u�� � � � � kn�un��

Proof� Straightforward from Theorem ���� and Theorem �����

Chapter �

The typing system as a logic

In this chapter we discuss LCBV

c�t considering it as a logic� We reformulate the typing system LCBV

c�t

into a sequent calculus since the logic can be easily understood when compared with LK and LJ�

��� A sequent calculus style formulation

We consider types as formulas� That is� we have atomic formulas� conjunctions� disjunctions�

implications and exceptions� A sequent of the system is of the form

A� � � �Am � C ! E� � � �En

where m and n can be �� It looks like a sequent of LK rather than LJ ignoring the semicolon �!�

between C and E� � � �En� Actually� its purely logical meaning is the same as LK� In this sense�

the semicolon is unnecessary� But we saw that it plays a signi�cant role for the constructive

meaning of the sequent�

De�nition ��� �Realizability of sequents� The sequents are interpreted as follows� Let

�x� � � �xm� M� u� � � �un� be a triple which consists of a sequence of distinct individual variables

x� � � � xm� a term M and a sequence of distinct tag variables u� � � � un� We assume that the

free individual and tag variables of the term M are included in the two sequences� A triple

�x� � � �xm� M� u� � � �un� realizes A� � � �Am � C ! B� � � �Bn if and only if

fx� �A�� � � � � xm �Amg ��M �C ! fu� �B�� � � � � un �Bng�

De�nition ��� �Inference rules� The inference rules and the corresponding realizers are as

follows�

A� A !
�x� x� �

�init�

�
x� M��
u�
�� � A ! �

�
y z� M��
v�
��A� C ! �

�� �� � C ! � �
�
x
y� let z�M�� M��
u
v�

�cut�

�
x y� y�
z� M�
u�
��AB �� � C !

��BA�� � C !
�
x y� y�
z� M�
u�

�x��

�
x� M�
u�
�� C !

�A� C !
�
x y� M�
u�

�w��

�
x y� y�
z� M�
u�
��AA�� � C !

��A�� � C !
�
x y
z� M �y�y�� y�y���
u�

�c��

�� A sequent calculus style formulation ��

�
x� M�
u v� v�
w�
�� A ! �B C �

�� A ! �C B �
�
x� M�
u v� v�
w�

��x�

�
x� M�
v�
�� A !

�� A ! E
�
x� M� u
v�

��w�

�
x� M� u� u�
v�
�� A ! EE

�� A ! E
�
x� M �u�u�� u�u��� u
v�

��c�

�
x� M�
v�
�� E !

�� A ! E
�
x� throw u M� u
v�

�throw�

�
x� M� u
v�
�� A ! A

�� A !
�
x� catch u M�
v�

�catch�

�
x z� M�
u�
�A� C !

�A�B � C !
�
x y� M �proj� y�z��
u�

�����

�
x z� M�
u�
�B � C !

�A�B � C !
�
x y� M �proj�y�z��
u�

�����

�
x� M��
u�
�� � A ! �

�
y� M��
v�
�� � B ! �

�� �� � A�B ! � �
�
x
y� �M�� M���
u
v�

����

�
x z�� M��
u�
��A� C ! �

�
y z�� M��
v�
��B � C ! �

�� ��A�B � C ! � �
�
x
y z� case z z��M� z��M��
u
v�

����

�
x� M�
u�
�� A !

�� A�B !
�
x� inj�M�
u�

�����

�
x� M�
u�
�� B !

�� A�B !
�
x� inj�M�
u�

�����

�
x� M��
u�
�� � A ! �

�
y z�� M��
v�
��B � C ! �

�� ��A�B � C ! � �

�
x
y z� let z��zM� � M��
u
v�

����

�
x y� M� �
�A� B !

�� A�B !
�
x� � y�M� �

����

�
x z�� M��
v�
��A� B ! �

�
y z�� M��
w�
��E � C ! �

�� ��A	E � C ! B � �

�
x
y z� let z���catch u� let z��zu
�� throw u M��� M�� u
v
w�

�	��

�
x� M� u
v�
�� A ! E

�� A	E !
�
x� � u�M�
v�

�� 	�

The typing system LCBV

c�t is equivalent to the above sequent calculus as a logic�

Theorem ��� fx� �A�� � � � � xm �Amg � M �C ! fu� �B�� � � � � un �Bng is derivable in LCBV

c�t for

some x�� � � � � xm� M � u�� � � � � un� if and only if A� � � � Am � C ! B� � � � Bn is derivable in the

sequent calculus�

Proof� Induction on the structure of the derivation�

If we ignore semicolons in the sequents� the inference rules are almost the same as the ones

of LK� It should be noted that every right logical rule introduces a logical connective into the

formula between the arrow and the semicolon� namely� the main conclusion� In the following

sections we discuss the details�

�� The typing system as a logic

��� The logical meaning of the new connective

First we consider the new logical connective 	� From the logical point of view� the new connective

	 is equivalent to �� The di�erence between them consists only in their implementations�

De�nition ��� We use #A to denote the formula obtained from a formula A by replacing

every occurrence of the logical connective 	 by �� If #A � #B� then we denote it by A � B� If

� � A� � � � An� � B� � � � Bn and Ai � Bi for any i �� � i � n�� then we denote it by � � �

Lemma ��� If A � A�� then A� A� ! is a derivable sequent�

Proof� Straightforward induction on the structure of the formula A� The basic idea comes from

the following two derivations�

��� ind� hyp�

A� A� !

A� A� �B� !
�����

��� ind� hyp�

B � B� !

B � A��B� !
�����

A	B � A� �B� ! A� �B�
�	��

A	B � A� �B� !
�catch�

��� ind� hyp�

A� A� !

��� ind� hyp�

B � B� !

B � A� ! B�
�throw�

A�B � A� ! B�
����

A�B � A� 	B� !
�� 	�

Theorem ��� If �� A ! is a derivable sequent� and if � � ��� A � A� and � �� then

�� � A� ! � is also derivable�

Proof� Induction on the structure of the derivation of the sequent �� A ! � Apply Lemma �����

in the case that the last rule is �init��

If we identify A	B with A�B� the formal system can be regarded as a variant of the propo�

sitional fragment of LJ�

Theorem ��� A sequent A� � � � Am � C ! is derivable in our sequent calculus if and only if
#A� � � � #Am � #C is derivable in �the propositional fragment of� LJ�

Proof� The if part is trivial because the propositional fragment of LJ can be regarded as a

subsystem of ours� For the only if part� prove the following lemma by induction on the structure

of the derivation� If A� � � � Am � C !E� � � � En is derivable� then #A� � � � #Am � #C � #E�� � � �� #En

is derivable in �the propositional fragment of� LJ� The theorem is a corollary of the lemma�

As a corollary of the theorem� we get the disjunction property of the system�

Corollary ��� �Disjunction property� Let � A�B ! be a derivable sequent� Then we can

derive � A ! or � B ! �

�� The catch and throw mechanism as structural rules ��

We should note that there is another possibility of formulation of �	�� as follows�

�
x z� M�
v�
�A� C !

�A	E � C ! E
�
xy� let z�y u� M� u
v�

�	��

This formulation seems more natural than the original in De�nition ����� from the viewpoint of

realizer construction� and is equivalent to the original as long as we have �cut�� But we could

not get the cut�elimination theorem if we replaced the original rule by this rule�

��� The catch and throw mechanism as structural rules

The three right�structural rules of LK are divided into �ve rules� i�e�� ��x�� ��c�� ��w�� �catch�

and �throw�� The rules �catch� and ��c� correspond to the right�contraction rule of LK� The for�

mer introduces a catch�term� The latter means a sharing of one tag variable by two throw�terms�

i�e�� multiple throw�terms can be caught by one catch�term afterwards� The right�weakening rule

of LK is divided into �throw� and ��w�� The former corresponds to a throw�term� The latter

means an introduction of a redundant tag variable� We note that the rule ��w� is a derived rule�

�
x� M�
v�
�� A !

�� E ! A
�throw�

�� A ! EA
�throw�

�� A ! AE
��x�

�� A ! E
�
x� catch w �throw w �throw u M ��� u
v�

�catch�

But we adopt ��w� as a primitive rule because the realizer given above introduces a redundant

throw�term� i�e�� a throw�term never invoked�

We have no right�exchange rule over the semicolon� but it is also a derived rule as follows�

�
x� M� u
w�
�� A ! E

�� E ! AE
�throw�

�� E ! EA
��x�

�� E ! A
�
x� catch u �throw v M �� v
w�

�catch�

In contrast to ��w�� we leave it as a derived rule because there is no primitive programming

construct corresponding to the rule�

��� The restriction on the right implication rule

As a logic� the only and signi�cant di�erence from LK is that there must be exactly one formula

on the right hand side of the sequent when we apply the right�implication rule ����� This

restriction is required to keep the system constructive� Roughly� our system can be regarded

�� The typing system as a logic

as the propositional fragment of LK with this restriction on the right�implication rule� If we

dropped the restriction� the following anomaly would occur� Consider the following derivation of

A��A�B�� which is not derivable in the constructive logic�

A� A !
�init�

A� A��A�B� !
�����

A� B ! A��A�B�
�throw�

� A�B ! A��A�B�
����

� A��A�B� ! A��A�B�
�����

� A��A�B� !
�catch�

The realizer would be �� catch u �inj� ��x� throw u �inj� x���� �� Note that the term is a

normal form since �x� throw u �inj�x� is not a value� But it does not realize A��A�B�� The

evaluation process of the term by the abstract machine would be as follows�

� S�� � � � � Sl��� case � y�e� z�e�� catch u �inj� ��x� throw u �inj� x��� �

� � S�� � � � � Sl��� case � y�e� z�e�� inj� ��x� throw l �inj� x�� �

� � S�� � � � � Sl��� case � y�e� z�e�� inj� �� � x� throw l �inj�x� �

� � S�� � � � � Sl��� case � y�e� z�e�� inj� �� val ��x� throw l �inj� x�� �

� � S�� � � � � Sl��� case � y�e� z�e�� val �inj� ��x� throw l �inj�x��� �

� � S�� � � � � Sl��� e��val ��x� throw l �inj�x���z� �

Note that the tag constant l in the last is meaningless because the corresponding evaluation

context has been lost� From a computational point of view� this problem can be solved by

introducing more powerful facilities for non�local exit such as call�cc of Scheme� But it a�ects

the realizability interpretation of formulas� For example� although the realizers of disjunctions

still have a certain constructive meaning� they do not always contain the information that speci�es

which of A�B is realized by them� It should be noted that the system without the restriction

becomes a classical one� and we do not have the soundness theorem or the disjunction property

anymore�

LK with this kind of restriction on ���� is known as a variant of LJ� which is essentially

equivalent to LJ �cf����� � ���� The same restriction is also required for �����rule in the case

of predicate calculus�

��� The cut�elimination theorem

The �cut��rule of our sequent calculus is redundant�

Theorem ��� �Cut	elimination� If a sequent is derivable� then we can derive it without

�cut��rule�

The proof becomes more complicated than the case of LJ�LK because there exists the special

restriction to apply �����rule and the new connective 	 has been introduced� We call the

following inference rules structural rules�

�x�� �c�� �w�� ��x� ��c� ��w� �throw� �catch�

�� The cut	elimination theorem ��

Note that we count �throw� and �catch� as structural rules� Left�logical rules� right�logical rules

and principal formulas of logical rules are de�ned in the standard manner� To prove Theo�

rem ������ we �rst extend �cut��rule as follows� and we call the extended rule �mix��

�� � A ! � �� � C ! �

�� ���
X�� C ! �A �
X� �

�mix�

where ��
X stands for the sequence of formulas obtained from �� by removingX� and A �
X

stands for the sequence of formulas obtained from A � by removing X�

We now consider only derivations that involve �mix� instead of �cut� since we can use �mix�

instead of �cut�� It is enough to show that we can construct a derivation which does not include

any �mix�� i�e�� a mix�free derivation� We prove the theorem by induction on the number of

occurrences of �mix� in the derivation� Suppose we have a derivation � such as

��� ��

�� � A ! �
�r��

��� ��

�� � C ! �
�r��

�� ���
X�� C ! �A �
X� �

�mix�

where �� and �� are mix�free derivations and �r�� and �r�� stand for some inference rules except

�mix�� We translate derivations of this form to mix�free derivations�

De�nition ��� �Grades and heights� We de�ne the grade of the �mix��rule as the number

of logical connectives such as ����� and 	 occurring in X� The left height of the �mix��rule

is the maximum length of the derivation paths in ��� The right height of the �mix��rule is the

maximum length of the derivation paths in ��� The height of the �mix��rule is the sum of the

left and right heights�

Proof of the cut	elimination theorem We translate derivations of the form of � to mix�

free derivations by induction on the lexicographic ordering of the grade and the height of the

�mix��rule� We divide the proof into the following four cases�

Case �� The rule �r�� is not a right�logical rule whose principal formula is X� The only crucial is

the subcase that �r�� is ���� whose principal formula is not X� Since there exists a restriction

to apply ����� this case is not just a variant of other subcases� The derivation � has the

following form�
��� ��

��A� B !

�� � A�B !
����

��� ��

�� � C ! �
�r��

�� ���
X�� C ! �A�B
X� �

�mix�

The conclusion is identical to �� ���
X� � C ! A�B � since the principal formula A�B is

not X� We can derive it applying structural rules to �� � A�B ! �

Case �� The rule �r�� is a right�logical rule whose principal formula is X� and �r�� is �����

This case is crucial�

�� The typing system as a logic

Subcase 	��� The rule �r�� is ���� whose principal formula is X� i�e�� the derivation � has the

following form�

��� ���
��� � A� ! ��

��� ���
��� � A� ! ��

��� ��� � A� �A� ! �� ��
����

��� ��
��C � D !

�� � C�D !
����

��� ��� ���
X�� C �D ! � �� ��
X�
�mix�

First� we consider the following derivation for each i �i � �� ���

��� ��i
��i � Ai ! �i

��� ��
��C � D !

�� � C �D !
����

��i ���
X� � C�D ! �Ai �i
X�
�mix�

Since the left height of the �mix��rule is less than �� we have a mix�free form of this derivation

by the induction hypothesis� Let ���i be the mix�free derivation� Next� we consider the following

derivation�

A� � A� !
�init�

A� � A� !
�init�

A�A� � A� �A� !
����

��� ��
��C � D !

A�A� ���C
X� � D !
�mix�

A�A� ���
X�C � D !
�w���

A�A� ���
X� � C�D !
����

Since the left height of the �mix��rule is equal to or less than � and the right height is less than

�� we have a mix�free form of this derivation by the induction hypothesis� Let ��� be the mix�free

derivation� Combining ����� �
�
�� and �

�
�� we get the following derivation� where �

�
� and

�
�i are

��
X and Ai �i
X� respectively�

��� ����
��� �

�
� � C �D ! �

��

��� ����
��� �

�
� � C �D ! �

��

��� ���
A�A� �

�
� � C�D !

��� ��� �A�A� ���
A��� C �D ! �C �D �
��
 A��

�mix�

��� structural rules

A� ��� �
�
� � C �D ! ��
X

��� ��� �A� ��� ���
A��� C�D ! �C�D �
��
A�� � ��
X�

�mix�

��� structural rules

��� ��� ��� � C �D ! � �� ��
X�

Since the grades of the two �mix��rules are both less than �� we have a mix�free form of this

derivation by the induction hypothesis�

Subcase 	�	� The rule �r�� is ����� or ����� whose principal formula is X� Similar to Case

����

�� The cut	elimination theorem ��

Subcase 	�
� The rule �r�� is ���� whose principal formula is X� In this case� just similar to

the proof for LK or LJ because � is empty�

Subcase 	�� The rule �r�� is ��	� whose principal formula is X� i�e�� the derivation � has the

following form�
��� ��

�� � A� ! A� �

�� � A� 	A� ! �
�� 	�

��� ��
��C � D !

�� � C �D !
����

�� ���
X�� C �D ! � �
X�
�mix�

First� We consider the following derivation�

��� ��
�� � A� ! A� �

��� ��
��C � D !

�� � C �D !
����

�� ���
X�� C �D ! A�A� �
X
�mix�

Since the left height of the �mix��rule is less than �� we have a mix�free form of this derivation

by the induction hypothesis� Let ��� be the mix�free derivation� Next� we consider the following

two derivations�

A� � A� !
�init�

A� � A� ! A�
��w�

A� � A� 	A� !
�� 	�

��� ��
�� C � D !

A� ���C
X�� D !
�mix�

A� ���
X�C � D !
�w���

A� ���
X�� C �D !
����

A� � A� !
�init�

A� � A� ! A�
�throw�

A� � A� 	A� !
��	�

��� ��
��C � D !

A� ���C
X�� D !
�mix�

A� ���
X�C � D !
�w���

A� ���
X�� C �D !
����

Note that we need at least two steps to derive �� � A� ! A� in ��� Therefore the left heights

of the �mix��rules are equal to or less than �� Since the right heights are less than �� we have

mix�free forms of these derivations by the induction hypothesis� Let ���� and �
�
�� be the mix�free

derivations� Combining ���� �
�
�� and �

�
��� we get the following derivation� where �

�
� is ��
X�

��� ���
�� �

�
� � C�D ! A�A� �
X

��� ����
A� �

�
� � C�D !

�� �
�
� �A� �

�
�
 A��� C �D ! �A�A� �
X�
A�

�mix�

��� structural rules

�� �
�
� � C�D ! A� �
X

��� ����
A� �

�
� � C�D !

�� �
�
� �A� �

�
�
A��� C�D ! �A� �
X�
 A�

�mix�

��� structural rules

�� ��� � C�D ! �
X

Since the grades of the two �mix��rules are both less than �� we have a mix�free form of this

derivation by the induction hypothesis�

�� The typing system as a logic

Case �� The rule �r�� is a right�logical rule whose principal formula is X� and �r�� is neither

����� nor a left�logical rule whose principal formula is X� The proof is just similar to the one

for LK or LJ�

Case �� The rule �r�� is a right�logical rule whose principal formula is X� and �r�� is a left�

logical rule whose principal formula is also X� The proof is also just similar to the cases of LJ

and LK�

Unfortunately the computational behavior of the catch�throw mechanism is not captured by

the cut�elimination process� Consider the following simple example�

A� A !
�init�

A� A ! A
�throw�

A� A !
�x� catch u �throw u x�� �

�catch�

This is a cut�free derivation� but the realizer includes a catch�throw pair� Another kind of proof

transformation should be considered to explain the computational behavior of the mechanism�

Roughly� the throw operation corresponds to the following form of non�local proof transformation�

��� �
�� E !

�� A ! E
������

�throw�

�� � E ! E �

�� � E ! �
�catch�

��

��� �
�� E !

��� �wxc � wxc�

�� � E ! � �

where �� � E ! � must be derivable from � � E ! by applying ��x�� ��w�� ��c�� �x���

�w�� and �c��� We will discuss the details in Chapter ��

Chapter �

A natural extension with a

non�determinism

��� A non�determinism by the catch and throw mecha�

nism

In the previous chapters� the author showed that the catch�throw mechanism corresponds to a

variant formulation of Gentzen
s NJ following the Curry�Howard isomorphism in the opposite

direction� and gave a correspondence with the conventional implementation by an abstract stack

machine� in which the computational behavior of the mechanismwas treated by a �xed evaluation

strategy� the call�by�value strategy� and therefore the result of evaluation was unique� However�

generally� the catch�throw mechanism introduces a non�determinism to evaluation processes� that

is� the result of evaluation depends on the evaluation strategy� For example� let M be a term

de�ned by

M � catch u ���x� � y� �� �throw u �� �throw u ���

There are three possible results for the evaluation ofM depending on the evaluation strategy as

follows�

M � catch u ��� y� �� �throw u ��� catch u �� �

M � catch u �throw u ��� �

M � catch u �throw u ��

In this chapter� we �rst extend the language to capture this non�deterministic feature of the

catch and throw mechanism� and introduce its typing system� and show that the new typing

system has the subject reduction property�

��� A calculus with a non�determinism

We �rst extend the calculus described in Chapter � by new reduction rules� The syntax of the

terms used in the new calculus is the same as the one de�ned in Chapter �� but we do not use

�� A natural extension with a non	determinism

let�expressions such as let x�M� N� That is� Term is now rede�ned as�

Term � � � Const j Var

j throw Tvar Term j catch Tvar Term

j �Var� Term� j TermTerm

j �Term� Term� j proj�Term j proj�Term

j inj� Term j inj� Term j case Term Var� Term Var� Term

j � Tvar� Term j TermTvar �

We need not the notions of values or evaluation contexts in the new calculus�

����� Operational semantics

Now we de�ne an operational semantics of the new calculus by a set of reduction rules on terms�

The non�deterministic feature of the catch and throw mechanism is introduced by the following

reduction rule�

De�nition ��� � 	�
t
� A relation 	�

t
on terms is de�ned as follows�

M �throw u N�x� 	�
t
throw u N �x � FIV �M � and x ��M � �

In other words�

C�throw u N � 	�
t
throw u N�

where C �� � and C does not capture any individual�tag variables occurring freely in throw u

N � Note that N may not be a value�

Example ���

�inj� �throw u M �� throw v N� 	�
t

throw u M

�inj� �throw u M �� throw v N� 	�
t

throw v N

throw u M �	�
t

throw u M

case z x��throw u x� y�y �	�
t

throw u x

catch u �throw u M � �	�
t

throw u M

catch v �throw u �M v�� �	�
t

throw u �M v�

The rest of reduction rules is de�ned by the following rules�

De�nition ��� � 	�n � A relation 	�n on terms is de�ned as follows�

catch u M 	�n M �u �� FTV �M ��

catch u �throw u M � 	�
n

M �u �� FTV �M ��

��x�M �N 	�
n

M �N�x�

��u�M � v 	�n M �v�u�

proj��M� N� 	�n M

proj��M� N� 	�
n

N

case �inj�L� x�M y�N 	�
n

M �L�x�

case �inj�L� x�M y�N 	�n N �L�y�

�� Basic properties of the calculus ��

De�nition ��� �Reduction rules� We de�ne a relation 	� by the union of 	�t and 	�n � that

is�

M 	� N i� M 	�
t
N or M 	�n N�

De�nition ��� ��� We de�ne a relation � as follows� M � N if and only if N is obtained

from M by replacing an occurrence of M � in M by N � such that M � 	� N �� Let �� be the

transitive and re	exive closure of the relation ��

Example ��� Let �� � and be distinct individual constants� and let M be as M � catch u

���x� � y� �� �throw u �� �throw u ���

M � catch u ��� y� �� �throw u ��� catch u �� �

M � catch u �throw u ��� �

M � catch u �throw u ��

De�nition ��� �sub�� We de�ne a relation sub� as follows�

M sub� N i� M � N and M �	� N�

and sub�� as the transitive and re	exive closure of sub� �

��� Basic properties of the calculus

In this section� we consider about the basic properties of the calculus�

Proposition ��� �Extension of
�
CBV

� Let M and N be terms of the new calculus� that is� M

or N does not include any let�expressions� If M �
�
CBV

N � then M �� N �

Proof� Obvious from the de�nitions of
�
CBV

and ��

Proposition ��� Let L� M and N be terms and x an individual variable� Let u and v be tag

variables� If M 	� N � then

�� M �L�x� 	� N �L�x�� and

	� M �v�u� 	� N �v�u��

Proof� Obvious from the de�nition of 	��

Proposition ��� Let L� M and N be terms and x an individual variable� Let u and v be tag

variables� If M � N � then

�� M �L�x�� N �L�x�� and

	� M �v�u�� N �v�u��

Proof� We can assume that M sub� N because it is obvious from Proposition ���� if M 	� N �

We show that M �L�x�� N �L�x� by induction on jM j� Suppose M sub� N � Obviously� M must

not be a variable� If M � catch u M � for some u and M �� then we can assume that u is fresh�

and that N � catch u N � for some N � such that M � � N �� Since M ��L�x� sub� N ��L�x� by the

induction hypothesis� we get M �L�x�� N �L�x� in this case� We can similarly derive it even if

M has one of the other forms� We can also get M �v�u�� N �v�u� by induction on jM j�

�� A natural extension with a non	determinism

Proposition ��� Let M be a term� and let x and y be individual variables� Let u and v be

tag variables� If M �y�x� v�u� 	� N � then M 	� N � and N � N ��y�x� v�u� for some N ��

Proof� Obvious from the de�nition of 	��

Proposition ��� If M �y�x� v�u�� N � then M � N � and N � N ��y�x� v�u� for some N ��

Proof� Similar to the proof of Proposition ����

��� The typing system Lc�t

����� Syntax of typing judgements

We introduce a new typing system for the new calculus which has the extended reduction rules�

De�nition ��� �Type expressions� We use the same class of type expressions� or formulas�

as LCBV

c�t � That is� atomic types� conjunctions �A�B�� disjunctions �A�B�� implications �A�B�

and exceptions �A	B��

De�nition ��� �Individual contexts� Individual contexts are also de�ned in the same way

as LCBV

c�t �

De�nition ��� �Tag contexts� We extend the de�nition of tag contexts as follows� A tag

context is a �nite mapping which assigns a pair of a type expression and a set of individual

variables to each tag variable in its domain� We use � �� � � � to denote tag contexts� Let

u�� � � � � un be tag variables� Let B�� � � � � Bn be type expressions� and let V�� � � � � Vn be sets of

individual variables such that if ui � uj then Bi � Bj and Vi � Vj for any i and j� We

use fu� �B
V�
� � � � � � un �BVn

n g to denote a tag context whose domain is fu�� � � � � ung and which

assigns the pair � Bi� Vi � to ui for each i� We denote the �rst and the second components

of �u� by t�u� and v�u�� respectively� For example� t�ui� � Bi and v�ui� � Vi if

 � fu� �B
V�
� � � � � � un �BVn

n g�

De�nition ��� �Compatible contexts� Let � and �� be individual contexts� � is compatible

with �� if and only if ��x� � ���x� for any individual variable x � Dom����Dom����� We denote

it by � k ��� Note that � � �� is also an individual context if � k ��� The compatibility of tag

contexts is also de�ned as follows� is compatible with � if and only if t�u� � �t�u� for

any individual variable u � Dom� � �Dom� ��� We denote it by k �� When and � are

compatible� we de�ne a new tag context t � as follows�

� t ���u� �

���
��
� t�u�� v�u� � �v�u�� if u � Dom� � �Dom� ��

 �u� if u � Dom� � and u �� Dom� ��

 ��u� if u �� Dom� � and u � Dom� ��

Note that Dom� t �� � Dom� � �Dom� ���

De�nition ��� Let be as � fu� �B
V�
� � � � � � un �B

Vn
n g� and let u and v be tag variables� If

fu� vg Dom� � implies t�u� � t�v�� then we de�ne a tag context �v�u� as follows�

 �v�u� � fu��v�u� �B
V�
� � � � � � un�v�u� �B

Vn
n g�

We de�ne ��y�x� similarly for an individual context � and individual variables x and y�

�� The typing system Lc�t ��

De�nition ��� Let V be a set of individual variables� We de�ne a tag context �V�fxg� as

follows�

Dom� �V�fxg�� � Dom� �

 �V�fxg�t�u� � t�u�

 �V�fxg�v�u� �

�
� v�u�
 fxg�� V if x � v�u�

 v�u� otherwise�

De�nition ��� �Typing judgements� Let � and be an individual context and a tag con�

text� respectively� such that v�u� Dom��� for any u � Dom� �� Let M be a term� and C a

type expression� Typing judgements have the following form�

� �M �C !

The intended meaning of a typing judgement fx� �A�� � � � � xm �Amg � M �C ! fu� �B
V�
� � � � � �

un �BVn
n g is roughly that when we execute the programM supplying values of the types A� � � �Am

for the corresponding free variables x�� � � � � xm of M � it normally reduces to a value of the type

C� otherwise the program throws a value of Bj with a tag uj for some j �� � j � n�� and the

thrown value depends on only the individual variables which belong to Vj �

����� Lc�t

We denote the typing system by Lc�t� which can be an extension of L
CBV

c�t �

De�nition ��� �Typing rules� Lc�t is de�ned by the following set of typing rules�

� � fx �Ag � x �A !
�var�

� � M �A ! t fu �AV g

� � catch u M �A !
�catch�

�� �M �E !

�� � �� � throw u M �A ! t fu �EDom���	g
�throw�

� � fx �Ag �M �B !

� � �x�M �A�B !
���I � �x �� v�u� for any u � Dom� ��

�� �M �A�B ! � �� � N �A ! �

�� � �� �M N �B ! � t �
���E �

� � M �A ! t fu �EV g

� � �u�M �A	E !
�	�I �

�� A natural extension with a non	determinism

�� �M �A	E !

�� � �� � M u �A ! t fu �EDom���	g
�	�E �

�� �M �A ! � �� � N �B ! �

�� � �� � �M� N� �A�B ! � t �
���I �

� �M �A�B !

� � proj�M �A !
����E �

� �M �A�B !

� � proj�M �B !
����E �

� �M �A !

� � inj�M �A�B !
����I �

� �M �B !

� � inj�M �A�B !
����I �

�� � L �A�B ! � �� � fx �Ag �M �C ! � �� � fy �Bg � N �C ! �

�� � �� � �� � case L x�M y�N �C !
 � t ��Dom�����fxg�t ��Dom�����fyg�

���E �

The side condition for ���I � is necessary to keep the system constructive� Note that the following

inference rule of LCBV

c�t corresponds to ���I � of Lc�t�

� � fx �Ag �M �B ! fg

� � �x�M �A�B ! fg
���I �

As a logic� ���I � of LCBV

c�t is equivalent to ���I � of De�nition ������ but is too restrictive with

respect to the variation of proofs� that is� typed programs� For example� the following typing

judgement� which is derivable in Lc�t� would not be derivable if we replaced ���I � by the one of

LCBV

c�t �

fg � catch u ��x� throw u �� y� y�� �A�A ! fg

Moreover� the language would not have a subject reduction property� because

fg � catch u ��� z� � x� z� �throw u �� y� y��� �A�A ! fg

would be still derivable� but

catch u ��� z� � x� z� �throw u �� y� y��� � catch u ��x� throw u �� y� y���

This is the reason why we maintain the set of the relevant individual variables to each tag in tag

contexts of typing judgements�

The following example of a derivation shows that the calculus does not have Church�Rosser

property even if we consider only the well�typed terms� Let M be the term �x� � f� catch u

��� y� x� �throw u �f x���� The well�typed term M has two normal forms as follows�

M � �x� � f� catch u �throw u �f x��� �x� � f� f x

M � �x� � f� catch u x� �x� � f� x

�� The typing system Lc�t ��

Example ��
 Let � be as � � fx �A� f �A�Ag�

fy �Bg � x �A ! fg
�var�

fg � � y� x �B �A ! fg
���I �

� � f �A�A ! fg
�var�

� � x �A ! fg
�var�

� � f x �A ! fg
���E �

� � throw u �f x� �B ! fu �Afx�fgg
�throw�

� � �� y� x� �throw u �f x�� �A ! fu �Afx�fgg
���E �

� � catch u ��� y� x� �throw u �f x��� �A ! fg
�catch�

fx �Ag � � f� catch u ��� y� x� �throw u �f x��� � �A�A��A ! fg
���I �

fg � �x� � f� catch u ��� y� x� �throw u �f x��� �A� �A�A��A ! fg
���I �

����� Basic properties of Lc�t

In this subsection� we presents a some basic properties of the system as a preparation for proving

the subject reduction property of Lc�t�

Proposition ���� If � � M �C ! is derivable� then FIV �M � Dom��� and FTV �M �

Dom� ��

Proof� By induction on the derivation of � �M �C ! �

De�nition ���� Let and � be tag contexts� We de�ne a relation � � as follows� The

relation � � holds if and only if

� Dom� � Dom� ��� and

� t�u� � �t�u� and v�u� �v�u� for any u � Dom� ��

Note that � � t �� if k ��

De�nition ���� Let d be a natural number� We say a typing judgement is d�derivable if there

exists a derivation of the judgement whose depth is less than or equal to d�

Proposition ���� Let d be a natural number� and let � � M �C ! be a d�derivable typing

judgement�

�� If � �� and � �� then �� � M �C ! � is also d�derivable�

	� If ��y�x� is well de�ned� then ��y�x� �M �y�x� �C ! �fyg�fxg� is also d�derivable�

� If �v�u� is well de�ned� then � � M �v�u� �C ! �v�u� is also d�derivable�

Proof� By simultaneous inductions on d�

Proposition ���� Let x and u be as x �� FIV �M � and u �� FTV �M ��

�� If � � fx �Ag �M �C ! is derivable� then � �M �C ! �fg�fxg� is also derivable�

	� If � �M �C ! t fu �EV g is derivable� then � �M �C ! is also derivable�

Proof� Straightforward induction on the derivations�

�� A natural extension with a non	determinism

Proposition ���� �Extension of LCBV

c�t � Let M be a term of the new calculus� that is� M

does not include any let�expressions� Let � be a tag context� and C a formula� Let u�� � � � � un be

a sequence of tag variables� and let B�� � � � � Bn be a sequence of formulas� If � �M �C ! fu� �B��

� � � � un �Bng is derivable in LCBV

c�t � then � �M �C ! fu� �B
Dom��	
� � � � � � un �B

Dom��	
n g is derivable

in Lc�t�

Proof� By induction on the depth of the derivation of � � M �C ! fu� �B�� � � � � un �Bng� Use

Proposition ������

Proposition ���� �Throw� Let M be term� and let u be a tag variable� If � � throw u

M �C ! is derivable� then � � throw u M �A ! is also derivable for any type A�

Proof� Since � � throw u M �C ! is derivable� so is � � M �E ! � for some E and � such

that � � t fu �EDom��	g� Therefore� we can derive � � throw u M �A ! for any A by

�throw��

Proposition ���� �Substitution� Let ��� ��� � and � be as �� k �� and � k �� If

�� � N �A ! � and �� � fx �Ag � M �C ! � are derivable� then �� � �� � M �N�x� �C ! � t

 ��Dom�����fxg� is also derivable�

Proof� By induction on the depth of the derivation of �� � fx �Ag � M �C ! �� Suppose that

�� � N �A ! � and ���fx �Ag �M �C ! � are derivable� First� suppose also that x �� FIV �M ��

that is� M �N�x� �M � Since �� �fx �Ag �M �C ! � is derivable� so is �� � M �C ! ��fg�fxg�

by Proposition ������� and this implies that ����� �M �C ! �t ��Dom�����fxg� is derivable

by Proposition ������ Therefore� we now assume that x � FIV �M �� By cases on the last rule

used in the derivation of �� � fx �Ag �M �C ! ��

Case �� The last rule is �var�� That is� M � x since x � FIV �M �� We can derive �� �

�� � M �N�x� �C ! � t ��Dom�����fxg� by applying Proposition ����� to the derivation of

�� � N �A ! � since M �N�x� � N and C � A �

Case �� The last rule is �catch�� In this case� M � catch u M � and the following judgement is

derivable for some u� V and M ��

�� � fx �Ag �M
� �C ! � t fu �C

V g

We can assume that u �� Dom� �� by Proposition ������ By the induction hypothesis� we have

a derivation of

�� � �� �M
��N�x� �C ! � t � � t fu �C

V g��Dom�����fxg�� �����

Since u �� Dom� ��� we get M �N�x� � catch u �M ��N�x��� By applying �catch� to ������ we get

�� � �� �M �N�x� �C ! � t ��Dom�����fxg��

Case �� The last rule is �throw�� In this case�M � throw u M � and the following judgement is

derivable for some u�M �� E� ��� and such that �
�
� ���fx �Ag and � � tfu �E

Dom���

�	g�

��� �M
� �E !

�� The subject reduction property of Lc�t ��

We get x � FIV �M ��� that is� x � Dom����� from x � FIV �M �� Let � be as � � ���
 fx �Ag�

that is� ��� � � � fx �Ag� By the induction hypothesis� we have a derivation of

�� � � �M
��N�x� �E ! � t �Dom�����fxg��

Since M �N�x� � throw u �M ��N�x��� by applying �throw��

�� � � �M �N�x� �C ! � t �Dom�����fxg�t fu �E
Dom�����	g�

Since � ��� by Proposition ����� again�

�� � �� �M �N�x� �C ! � t �Dom�����fxg�t fu �E
Dom�����	g�

Note that

 �Dom�����fxg�t fu �E
Dom�����	g � ��Dom�����fxg�

because � � t fu �EDom��	�fxgg and x �� Dom����

Case �� The last rule is ���I �� In this case M � � y�M �� C � C��C� and the following

judgement is derivable for some y� C�� C� and M � such that y �� v
��u� for any u � Dom� ���

�� � fx �Ag � fy �C�g �M
� �C� ! �

We can assume that y �� Dom���� by Proposition ������ and get M ��N�x� � � y� �M �N�x��� By

the induction hypothesis� we have a derivation of

�� � �� � fy �C�g �M
��N�x� �C� ! � t ��Dom�����fxg�� �����

We get y �� � � t ��Dom�����fxg��
v�u� for any u � Dom� � t ��Dom�����fxg�� since

y �� v
��u� for any u � Dom� �� and y �� Dom����� Therefore� we can derive

�� � �� � � y� �M
��N�x�� �C� ! � t ��Dom�����fxg�

by applying ���I � to ������

Case �� The last rule is one of the rest� Similar�

��� The subject reduction property of Lc�t

As mentioned in Section ������ the calculus does not have Church�Rosser property even if we

consider only the well�typed terms� However� it has the subject reduction property� which com�

pensates for this unpleasant feature� In this section� we show the subject reduction property of

Lc�t�

Lemma ��� If � �M �C ! is derivable and M 	�
t
throw v N � then � � throw v N �C !

is also derivable�

Proof� By induction on the depth of the derivation of � �M �C ! � Suppose that � �M �C !

is derivable andM 	�
t
throw v N � By Proposition ������� it is enough to show that � � throw v

N �C� ! is derivable for some C�� By cases according to the last rules used in the derivation�

�� A natural extension with a non	determinism

Case �� The last rule is �var�� This is impossible because M 	�t throw v N �

Case �� The last rule is �catch�� M � catch u M � and the following judgement is derivable for

some u� V and M ��

� �M � �C ! t fu �CV g ����

Since M 	�
t
throw v N � we get u �� FTV �throw v N � and

M � � throw v N or M � 	�
t
throw v N�

Therefore� from ���� or the induction hypothesis on �����

� � throw v N �C ! t fu �CV g�

We get � � throw v N �C ! by Proposition ������ since u �� FTV �throw v N ��

Case �� The last rule is �throw�� In this case� M � throw u M � and the following judgement

is derivable for some u� M �� E� �� and � such that �� � and � � t fu �EDom���	g�

�� �M � �E ! � �����

We get M � � throw v N or M � 	�
t
throw v N fromM 	�

t
throw v N � Therefore� from ����� or

the induction hypothesis on ������

�� � throw v N �E ! ��

We get � � throw v N �E ! by Proposition ����� since �� � and �
� �

Case �� The last rule is ���I �� M � �x�M �� C � C��C� and the following judgement is

derivable for some x� C�� C� and M � such that x �� v�u� for any u � Dom� ��

� � fx �C�g �M
� �C� ! �����

Since M 	�
t
throw v N � we get x �� FIV �throw v N � and

M � � throw v N or M � 	�
t
throw v N�

Therefore� from ����� or the induction hypothesis on ������

� � fx �C�g � throw v N �C� ! �

We get � � throw v N �C� ! by Proposition ������ since x �� FIV �throw v N ��

Case �� The last rule is one of the rest� Similar to Case � and Case �

Lemma ��� If � �M �C ! is derivable and M 	�n N � then � � N �C ! is also derivable�

Proof� By induction on the depth of the derivation of � �M �C ! � Suppose that � �M �C !

is derivable and M 	�n N � By cases according to the form of M �

Case �� M � catch u N and u �� FTV �N �� In this case� � � N �C ! t fu �CV g is derivable

for some V � We get � � N �C ! by Proposition ������ since u �� FTV �N ��

�� The subject reduction property of Lc�t �

Case �� M � catch u �throw u N � and u �� FTV �N �� The following judgement is derivable

for some V � �� and � such that �� � and t fu �CV g � � t fu �CDom���	g�

�� � N �C ! �

Since �� � and �
� tfu �CV g� � � N �C ! t fu �CV g is derivable by Proposition ������

Therefore� � � N �C ! is also derivable by Proposition ������ since u �� FTV �N ��

Case �� M � ��x�M��M� and N � M��M��x� for some x� M� and M�� The following two

judgements are derivable for some A� ��� ��� � and � such that � � �� � ��� � � t �

and x �� v
��u� for any u � Dom� ���

�� � fx �Ag �M� �C ! � �����

�� �M� �A ! � �����

Therefore� by Lemma ������� we get � � M��M��x� �C ! ��Dom�����fxg�t � from ����� and

������ where ��Dom�����fxg�t � � � t � � since x �� v
��u� for any u � Dom� ���

Case �� M � ��u�M �� v and N � M ��v�u� for some u� v and M �� The following judgement is

derivable for some E� ��� � and V such that �� � and � � t fv �EDom���	g�

�� �M � �C ! � t fu �EV g

Since � k fv �EDom���	g� �� � M ��v�u� �C ! ��v�u��fv �EV g is derivable by Proposition ������

Since �� �� by Proposition ����� again�

� � M ��v�u� �C ! ��v�u�� fv �EV g�

Since V Dom���� and �v�u� Dom�����

 ��v�u�t fv �EV g � ��v�u� t fv �EDom���	g � � t fv �EDom���	g � �

Therefore� � � M ��v�u� �C ! is derivable by Proposition ������

Case �� M � proji�M�� M�� and N �Mi for some i �i � �� ��� Similar�

Case �� M � case �injiM�� x��M� x��M� and N � Mi�M��xi� for some i �i � �� ��� Similar�

Lemma ��� If � �M �C ! is derivable and M 	� N � then � � N �C ! is also derivable�

Proof� Straightforward from Lemma ����� and Lemma ������

Theorem ��� �Subject reduction� If � � M �C ! is derivable and M � N � then � �

N �C ! is also derivable�

Proof� By induction on the depth of the derivation of � �M �C ! � Suppose that � �M �C !

is derivable and M � N � If M 	� N � then trivial by Lemma ����� Therefore we can assume

�� A natural extension with a non	determinism

that M � N and M �	� N � By cases according to the last rules used in the derivation� A typical

one is the case that the last rule is �throw�� In this case� M � throw u M � and

�� �M � �E ! �

is derivable for some u� M �� E� �� and � such that �� � and � � t fu �EDom���	g� Since

M � N and M �	� N � M � � N � and N � throw u N � for some N �� Therefore� �� � N � �E ! �

is derivable by the induction hypothesis� We get � � throw u N � �E ! by applying �throw��

The proofs for other cases are just similar�

��	 Lc�t as a logic

In this section� we show that Lc�t can be regarded as a conservative extension of the propositional

fragment of the standard intuitionistic logic such as Gentzen
s NJ and LJ� We �rst translate

each typing judgement of Lc�t into a formula� and then show its provability in the standard

intuitionistic logic� Let � be a total ordering over the union of Var and Tvar through this

section�

De�nition ��� Let be a tag context� and u a tag variable� We de�ne a tag context nu as

follows�

Dom� nu� � Dom� �
 fug

� nu��v� � �v� �v � Dom� �
 fug�

Let � be an individual context� and x an individual variable� �nx is de�ned in the same way�

De�nition ��� Let be a tag context� and x an individual variable� We de�ne two tag

contexts Dep�x� � and Indep�x� � as follows�

Dep�x� fg� � Indep�x� fg� � fg

Dep�x� fu �AV g � � �

�
fu �AV g �Dep�x� nu� if x � V

Dep�x� nu� otherwise

Indep�x� fu �AV g � � �

�
fu �AV g � Indep�x� nu� if x �� V

Indep�x� nu� otherwise

De�nition ��� Let be a non�empty tag context� We de�ne a formula Disj� � as follows�

Let u be the tag variable such that u � Dom� � and u � v for any v � Dom� �� Then�

Disj� � �

�
 t�u� if Dom�u� is a singleton

 t�u��Disj� nu� otherwise�

De�nition ��� Let � be an individual context� a tag context� Let C be a formula or a

place holder denoted by �� We de�ne a formulas Trans��� C� � as follows�

Trans�fg� C� � �

���
��

C if Dom� � � fg

Disj� � if Dom� � �� fg and C � �

C �Disj� � otherwise

�� Lc�t as a logic ��

Let x be the individual variable such that x � Dom��� and x � y for any y � Dom���� Then�

Trans��� C� � �

���
��

��x��Trans��nx� C� Dep�x� �� if Dom�Indep�x� �� � fg

���x��Trans��nx� C� Dep�x� ���

� Trans��nx� �� Indep�x� ��
otherwise�

Proposition ��� � �M �C ! is derivable in Lc�t if and only if Trans�#�� #C� # � is provable

in the propositional fragment of NJ�

Proof� By induction on the derivation of � �M �C ! �

Chapter �

A term model for the extended

system

	�� Term models

De�nition ��� Let red be a subrelation of �� A red�sequence is a possibly in�nite sequence

M��M��M�� � � � of terms such that Mi red Mi�� for any i�

De�nition ��� Let red be a subrelation of �� A term M is strongly normalizable w�r�t�

red if there exists no in�nite red�sequence starting with M � We simply say that M is strongly

normalizable if so is w�r�t� ��

De�nition ��� Let n be a natural number� We de�ne a relation �n� inductively as follows�

�� M ��� N i� M � N �

�� M �n��� N i� M �n� N or M �M � and M � �n� N for some M ��

We also de�ne sub�n
� in the same way�

Proposition ��� Let M be a term� and let x and y be individual variables� Let u and v be

tag variables� n a natural number� If M �y�x� v�u� �n� N � then M �n� N � and N � N ��y�x� v�u�

for some N ��

Proof� Straightforward from Proposition �����

De�nition ��� �Types� We de�ne a collection Type of sets of terms as follows�

Type � f T j For any M � T � M � N implies N � T �g �

Elements of Type are called types� We use T � S� � � � to denote types�

De�nition ��� �Regular types� A type T is regular if and only if

M � T impliesM �v�u� � T for any term M and for any tag variables u and v�

�� Term models ��

De�nition ��� Let V and V � be �nite sets of individual variables� and x an individual variable�

We de�ne V �V ��fxg� as

V �V ��fxg� �

�
�V
 fxg�� V � if x � V

V otherwise�

De�nition ��� �Frames� A set of term X is a frame if and only if

�� X is a regular type�

�� x � X for any individual variable x�

� if M� N � X � then M �N�x� � X � and

�� if � �M �C ! is derivable for some � and � then M � X �

De�nition ��
 Let n be a natural number� u a tag variable� T a type� and V a �nite set of

individual variables� A set of terms Jn�u� T� V � is de�ned as follows�

M � Jn�u� T� V � if and only if

�� if M �n� throw u K� then K � T �

�� if M �n� K for some normal form K such that u � FTV �K� and FIV �K� � V � fg�

then K � throw u L for some closed term L�

� if M �k� catch v L for some k �k � n� and v �� u� then L � Jn�k�u� T� V ��

�� if M �k� throw v L for some k �k � n�� then L � Jn�k�u� T� V ��

�� if M �k� � y� L for some k �k � n�� then L � Jn�k�u� T� V
 fyg��

�� if M �k� L�L� for some k �k � n�� then L�� L� � Jn�k�u� T� V ��

�� if M �k� �L�� L�� for some k �k � n�� then L�� L� � Jn�k�u� T� V ��

�� if M �k� proji L for some k �k � n� and some i �i � �� ��� then L � Jn�k�u� T� V ��

�� if M �k� inji L for some k �k � n� and some i �i � �� ��� then L � Jn�k�u� T� V ��

��� if M �k� case L� y��L� y��L� for some k �k � n�� then

� L� � Jn�k�u� T� V �� and

� for any i �i � �� ��� there exists some V �
i such that V

�
i �FIV �L���fyig� V and

Li � Jn�k�u� T� V �
i ��

��� if M �k� � v� L for some k �k � n� and v �� u� then L � Jn�k�u� T� V �� and

��� if M �k� Lv for some k �k � n�� then L � Jn�k�u� T� V ��

Note that M � Jn�u� T� V � is de�ned by induction on the lexicographic ordering of n and jM j�

Proposition ���� Let M be a term such that M � Jn�u� T� V ��

�� If m � n� then M � Jm�u� T� V ��

	� If M �k� N for some k �k � n�� then N � Jn�k�u� T� V ��

Proof� By induction on the lexicographic ordering of n and jM j�

�� A term model for the extended system

Proposition ���� If T T � and V V �� then Jn�u� T� V � Jn�u� T
�� V �� for any n and

u�

Proof� By induction on the lexicographic ordering of n and jM j�

Proposition ���� If M � Jn�u� T� V � and FIV �M � V � then M � Jn�u� T� V
���

Proof� By induction on the lexicographic ordering of n and jM j�

Proposition ���� If u �� FTV �M �� then M � Jn�u� T� V � for any type T �

Proof� By induction on the lexicographic ordering of n and jM j�

Proposition ���� Let T be a regular type� Let M be a term� and v and w tag variables such

that M � Jn�u� T� V ��

�� If w �� u� then M �w�v� � Jn�u� T� V ��

	� If M � Jn�v� T� V �� then M �w�v� � Jn�u� T� V ��

Proof� By induction on the lexicographic ordering of n and jM j� Use Proposition ������

De�nition ���� Let u be a tag variable� and T a type� We de�ne J �u� T� V � as follows�

J �u� T� V � � fM jM � Jn�u� T� V � for any ng�

De�nition ���� Let u be a tag variable� and T a type� We de�ne J��u� T� V � as follows�

� if M � throw u K� then K � T �

� ifM is a normal form such that u � FTV �M � and FIV �M ��V � fg� then M � throw u

L for some closed term L�

� if M � catch v L and v �� u� then L � J �u� T� V ��

� if M � throw v L� then L � J �u� T� V ��

� if M � � y� L� then L � J �u� T� V
 fyg��

� if M � L� L�� then L�� L� � J �u� T� V ��

� if M � �L�� L��� then L�� L� � J �u� T� V ��

� if M � proji L for some i �i � �� ��� then L � J �u� T� V ��

� if M � inji L for some i �i � �� ��� then L � J �u� T� V ��

� M � case L� y��L� y��L�� then

� L� � J �u� T� V �� and

� for any i �i � �� ��� there exists some V �
i such that V

�
i �FIV �L���fyig� V and

Li � J �u� T� V �
i ��

� if M � � v� L and v �� u� then L � J �u� T� V �� and

�� Term models ��

� if M � Lv� then L � J �u� T� V ��

Proposition ���� M � J �u� T� V � if and only if

M �� N implies N � J ��u� T� V ��

Proof� Obvious from the de�nitions�

Proposition ���� If M � J �u� T� V �� then M �� N implies N � J �u� T� V �� that is�

J �u� T� V � is a type�

Proof� Straightforward from the previous proposition�

Proposition ���
 If u �� FTV �M �� then M � J �u� T� V � for any T and V �

Obvious from Proposition ����� and Proposition �������

Proof�

Proposition ���� If T T � and V V � then J �u� T� V � J �u� T �� V �� for any tag variable

u�

Proof� Straightforward from Proposition ������ and Proposition �������

Proposition ���� Let u be a tag variable� If M � J �u� T� V � and FIV �M � V � then

M � J �u� T� V ���

Proof� Straightforward from Proposition ������ and Proposition �������

Proposition ���� Let T be a regular type� Let M be a term� and v and w tag variables such

that M � J �u� T� V ��

�� If w �� u� then M �w�v� � J �u� T� V ��

	� If M � J �v� T� V �� then M �w�v� � J �u� T� V ��

Proof� Straight forward from Proposition ������ and the de�nition of J �u� T� V ��

Proposition ���� If M � J ��u� T� V � and M sub�� M �� then M � � J ��u� T� V ��

Proof� Straightforward from the de�nition of J ��u� T� V � by Proposition �������

De�nition ���� We de�ne a set D� of terms as follows� M � D� if and only if

�� for any proper subterm N of M � N � D�� and

�� if M is a normal form� then

�a� if M �M�M� for some M� and M�� then FIV �M�� �� fg�

�b� if M � projiM
� for some i �i � �� �� and M �� then FIV �M �� �� fg�

�c� ifM � caseM� x�M� y�M� for someM��M��M�� x and y� then FIV �M�� �� fg� and

�d� if M �M � v for some M � and v� then FIV �M �� �� fg�

�� A term model for the extended system

De�nition ���� Let C be a formula and X a frame� We de�ne I��X � C� and I�X � C�

inductively as follows�

� M � I�X � C� i�

�� M � X �

�� M is strongly normalizable� and

� if M �� K� then K � D� � I��X � C��

� If C is an atomic type expression� then M � I��X � C� i�

�� if M is a normal form and FIV �M � � fg� then

� M � throw u L for some u and L� or

� M � A�C��

� M � I��X � C��C�� i�

�� if M � � y� L and K � I�X � C��� then L�K�y� � I�X � C��� and

�� if M is a normal form and FIV �M � � fg� then

� M � throw u L for some u and L� or

� M � � y� L for some y and L�

� M � I��X � C��C�� i�

�� if M � �L�� L��� then L� � I�X � C�� and L� � I�X � C��� and

�� if M is a normal form and FIV �M � � fg� then

� M � throw u L for some u and L� or

� M � �L�� L�� for some L� and L��

� M � I��X � C��C�� i�

�� if M � inji L for some i �i � �� ��� then L � I�X � Ci�� and

�� if M is a normal form and FIV �M � � fg� then

� M � throw u L for some u and L� or

� M � inji L for some i �i � �� �� and L�

� M � I��X � C� 	C�� i�

�� if M � � v� L� then L � I�X � C�� � J �v� I�X � C��� F IV �L��� and

�� if M is a normal form and FIV �M � � fg� then

� M � throw u L for some u and L� or

� M � � v� L for some v and L�

Proposition ���� Let X be a frame� I�X � C� is a regular type for any formula C�

Proof� By induction on the structure of C� Use Proposition ����� Proposition ������ and the

properties of the frame X �

�� Term models ��

Proposition ���� Let X be a frame� x � I�X � C� for any type C and any individual variable

x�

Proof� We get x � X from the second property of frames� The other requirements for x � I�X � C�

are rather trivial since x is an individual variable�

Lemma ���� Let X be a frame� If throw u M � I�X � A�� then throw u M � I�X � C� for

any C�

Proof� Suppose that throw u M � I�X � A�� Obviously throw u M � X and throw u M is

strongly normalizable� Suppose that throw u M �� K� By the de�nition of �� K � throw v

L for some v and L� Therefore� K � I��X � C� for any formula C�

Lemma ���
 Let X be a frame� and C a formula� If

�� M � X �

	� M sub�� K implies K � D��

� M sub�� K implies K � I��X � C��

� for any maximal proper subterm N of M � there exists some formula A such that N �

I�X � A�� and

�� if M sub�� L 	�n K for some L� then K � I�X � C��

then M � I�X � C��

Proof� First� we show that M is strongly normalizable� By the fourth premise� M is strongly

normalizable w�r�t� sub� � On the other hand� we get that L is strongly normalizable for any L such

that M sub�� K 	� L from the last premise� Therefore� so is M � Next� suppose that M �� K� It

is enough to show that K � D� � I��X � C� since M � X by the �rst premise� There are three

possible cases as follows�

�� M sub�� K�

�� M sub�� M ��throw v L�z� 	�
t
throw v L �� K for some M �� z� v and L such that z �

FIV �M �� and M � �� z�

� M sub�� M � 	�
n
L �� K for some M � and L�

In the �rst case� we get K � D� � I��X � C� from the second and the third premises� In the

second case� there exists some N such that N �� throw v L and N is a maximal proper subterm

of M � Therefore� throw v L � I�X � A� for some A by the fourth premise� We get throw v

L � I�X � C� by Lemma ������� and therefore� K � D� � I��X � C� since throw v L �� K� As

for the last case� it is obvious because L � I�X � C� from the last premise� This completes the

proof of M � I�X � C��

Lemma ���� Let u be a tag variable� and T a type� If

�� M sub�� K implies K � J ��u� T� V ��

�� A term model for the extended system

	� M sub�� L 	�
t
K implies K � J �u� T� V �� and

� if M sub�� L 	�n K for some L� then K � J �u� T� V ��

then M � J �u� T� V ��

Proof� Suppose that M �� K� There are three possible cases as follows�

�� M sub�� K�

�� M sub�� M ��throw v L�z� 	�
t
throw v L �� K for some M �� z� v and L such that z �

FIV �M �� and M � �� z�

� M sub�� M � 	�n L �� K for some M � and L�

It is enough to show that K � J ��u� T� V �� In the �rst case� we get K � J��u� T� V � from

the �rst premise� In the second case� K � J��u� T� V � because throw v L � J �u� T� V � by

the second premises� As for the third case� L � J �u� T� V � from the last premise� Therefore�

K � J ��u� T� V ��

De�nition ���� We de�ne a type D as follows� M � D i�

M �� K implies K � D� for any K�

De�nition ���� A frame X is admissible if and only if

if M� N � X �J �u� T� V � and MN � D� then MN � J �u� T� V ��

This property of admissible frames is crucial to the construction of the term model discussed here�

but it is not trivial whether such a frame exists or not� We will give an example of admissible

frame later�

Theorem ���� Let X be an admissible frame� Let � � fx� �A�� � � � � xm �Amg and �

fu� �B�� � � � � un �Bng� Let � � M �C ! be a derivable judgement� Let N�� � � �� Nm be terms

such that Ni � I�X � Ai� for any i �� � i � m�� Let u a tag variable� and V a �nite

set of individual variables� We de�ne K and U as K � K�N��x�� � � � � Nm�xm� and U �

U �FIV �N���fx�g� � � � � F IV �Nm��fxmg� for any K and U � Then�

� M � I�X � C�� and �����

� if Ni � J �u� I�X � t�u��� V � for any i �� � i � m�� then

M � J �u� I�X � t�u��� v�u� � V �� �����

where I�X � t�u�� � fg and v�u� � fg if u �� Dom� ��

Proof� Let � �M �C ! be a derivable judgement� By induction on the depth of the derivation�

Suppose that

Ni � I�X � Ai� for any i �� � i � m�� ����

First of all� we show M � X � Since � � M �C ! is derivable� M � X by the last property of

frames� Since Ni � X by ����� we get M � X by the third property of frames� We show the rest

properties of M for ����� and ����� by cases according to the form of M �

�� Term models �

Case �� M is an individual variable� In this case� we can assume that M � xi for some i�

Therefore� obvious because M � Ni and C � Ai�

Case �� M � catch v M � for some v and M �� That is� � � M � �C ! t fv �CV �

g is derivable

for some V �� We can assume that v �� FTV �Ni� for any i� Let � be as � � t fv �CV �

g� By

the induction hypothesis�

M � � I�X � C�� �����

On the other hand� since v �� FTV �Ni�� we get

Ni � J �v� I�X �
�t�v��� fg� �����

for any i by Proposition ������� Therefore� by the induction hypothesis� we get

M � � J �v� I�X � �t�v��� �v�v�� � J �v� I�X � C�� �v�v��� �����

To show ������ we check the �ve premises of Lemma ������� We have M � X � For the second

premise� suppose that M sub�� K for some K� By the de�nition of sub� � we get K � catch v K � for

some K� such that M � �� K�� Since M � � D by ������ we get K� � D�� Therefore� K � D� from

the form of K� For the third premise� suppose that M sub� K � catch v K� for some K and K�

such that FIV �K� � FIV �K�� � fg� We show that K is not a normal form� Since v �� FTV �K ��

implies K 	�n K�� we assume that v � FTV �K��� However� by ������ K� � throw v L for some

closed term L� This implies K � catch v throw v L 	�n L� that is� K is not a normal form�

Therefore� third premise is now obvious from the form of M and the de�nition of I��X � C�� On

the other hand� the fourth premise holds for M by ������ As for the last premise� suppose that

M sub�� L 	�
n
K for some L� There are two possible cases as follows�

�� M � catch v M � sub�� catch v K 	�n K�

�� M � catch v M � sub�� catch v �throw v K� 	�n K�

where v �� FTV �K� in both cases� In the �rst case� since M � �� K� we get K � I�X � C� from

������ In the second case� since M � �� throw v K� we get K � I�X � C� from ������ We now get

����� by Lemma �������

Next� we show ������ Suppose that Ni � J �u� t�u�� V � for any i� Since v ��M � it is enough

to show that M � J �u� I�X � �t�u��� �v�u� � V � by Proposition ������� and we can assume

that v �� u� Since t�u� � �t�u�� by the induction hypothesis�

M � � J �u� I�X � �t�u��� �v�u� � V �� �����

We apply Lemma ������ For the �rst premise� suppose that M � sub�� K � catch v K� for

some K and K�� We get K� � J ��u� I�X � �t�u��� �v�u� � V � from ������ Suppose that

u � FTV �K� and FIV �K� � � �v�u� � V � � fg� Since u � FTV �K ��� FIV �K�� � FIV �K�

and M � �� K�� we get K� � throw u L for some closed term L from ������ That is� K is

not a normal form� Therefore� the �rst premise is obvious from ������ For the second premise�

suppose that M sub�� L 	�
t
K for some L� By the de�nition of sub� � we get M � �� K� and therefore�

K � J �u� I�X � �t�u��� �v�u� � V � from ������ To show that the last premise holds� suppose

that M sub�� L 	�
n
K for some L� There are also the two possible cases above� Since M � �� K

or M � �� throw v K� we get K � J �u� I�X � �t�u��� �v�u� � V � from ������ We now get

M � J �u� I�X � �t�u��� �v�u� � V � by Lemma ������

�� A term model for the extended system

Case �� M � throw v M � for some v and M �� That is� �� � M � �E ! � is derivable for some

��� E and � such that �� � and � � t fv �EDom���	g� We can assume that � � by

Proposition ������ By the induction hypothesis�

M � � I�X � E�� �����

To show ������ we check the premises of Lemma ������� We have M � X � For the second and

the third premises� suppose that M sub�� K� We show that K � D� for the second premise� By

the de�nition of sub�� K � throw v K� for some K � such that M � �� K�� We get K� � D� from

������ For the third premise� K � I��X � C� is obvious from the form of K� We also get the

fourth premise from ������ As for the last premise� it is impossible that M sub�� L 	�n K by the

de�nition of sub� and 	�n � We now get ����� by Lemma �������

Next� we show ������ Suppose that Ni � J �u� I�X � t�u��� V � for any i� By the induction

hypothesis�

M � � J �u� I�X � t�u��� t�u� � V �� �����

We check the three premises of Lemma ������ For the �rst premise� suppose that M sub�� K �

throw v K�� If u � v� then we get K� � I�X � E� � I�X � t�v�� from ����� since M � �� K��

On the other hand� we get K� � J �u� I�X � t�u��� t�u� � V �� from ������ Now� suppose that

u � FTV �K�� FIV �K� � � t�u� � V � � fg and K is a normal form� If u � FTV �K ��� then we

get K� � throw u L for some L from ������ Therefore� u �� FTV �K��� that is� u � v� We get

FIV �K�� � fg from FIV �K� � � t�u� � V � � fg and

FIV �K� FIV �M �� Dom���� t�v��

Therefore� if w � FTV �K �� for some w� then K� � throw w L for some L� and this implies

that K is not a normal form� That is� K� is a closed term� Thus� the �rst premise holds� For

the second premise� suppose that M sub�� L 	�
t
K for some L� By the de�nition of sub� � we get

M � �� K� and therefore� K � J �u� I�X � t�u��� v�u� � V � from ������ Since it is impossible

that M sub�� L 	�n K� we now get ����� by Lemma ������

Case �� M � � y�M � for some y and M �� That is� � � fy �C�g � M � �C� ! is derivable for

some C� and C� such that C � C��C� and y �� v�u� for any u � Dom� �� We can assume

that y �� V and y �� FIV �Ni� for any i� Since y � I�X � C��� by the induction hypothesis�

M � � I�X � C��� ������

First� we show ������ We use Lemma ������� We have M � X � For the second premise�

suppose that M sub�� K for some K� By the de�nition of sub�� we get K � � y�K� for some K�

such that M � �� K�� We get K� � D� from ������� Therefore� the second premise holds� As for

the third premise� suppose that M � � y�M � sub�� � y� L� To show that � y� L � I��X � C��C���

suppose that K � I�X � C��� By the induction hypothesis�

M ��N��x�� � � � � Nm�xm�K�y� � I�X � C���

On the other hand� M ��N��x�� � � � � Nm�xm�K�y� � M ��K�y� �� L�K�y�� Therefore� L�K�y� �

I�X � C��� The fourth premise is also satis�ed by ������� As for the last premise� it is impossible

that M sub�� L 	�
n
K by the de�nition of sub� and 	�

n
� We now get ������

�� Term models ��

Next� we show ������ Suppose that Ni � J �u� I�X � t�u��� V � for any i� Since y � J �u�

I�X � t�u��� V �� by the induction hypothesis�

M � � J �u� I�X � t�u��� v�u� � V �� ������

Since y �� v�u�� y �� V and y �� FIV �Ni� for any i�

y �� v�u� � V� ������

We apply Lemma ������ For the �rst premise� suppose that M sub�� K � � y�K�� We get

K� � J �u� I�X � t�u��� � v�u� � V �
 fyg�

from ������ and ������� Suppose that u � FTV �K� and FIV �K� � � v�u� � V � � fg� Since

FIV �K�� FIV �K� � fyg� we get FIV �K�� � � v�u� � V � � fg by ������� Therefore� K� �

throw u L for some closed term L� This implies that K is not a normal form� Thus� the �rst

premise holds� For the second premise� if M sub�� L 	�
t
K for some L� then we get M � �� K� and

therefore� K � J �u� I�X � t�u��� v�u� � V � from ������� Since the last premise is trivial� we

get ����� by Lemma ������

Case �� M � M�M� for some M� and M�� That is� �� �M� �D�C ! � and �� �M� �D ! �

are derivable for some ��� ��� D� � and � such that � � �� � �� and � � t �� By the

induction hypothesis�

M� � I�X � D�C�� �����

M� � I�X � D�� ������

First� we show ����� by applying Lemma ������� We have M � X � For the second premise�

suppose that M sub�� K for some K� By the de�nition of sub�� we get K � K�K� for some K� and

K� such that M�
�� K� and M�

�� K�� We get K�� K� � D� from ����� and ������� Suppose

that K is a normal form� We get FIV �K�� �� fg since FIV �K�� � fg implies that

� K� � throw v L and K 	�
t
throw v L for some v and L� or

� K� � � y� L and K 	�
n
L�K��y� for some y and L�

by ������ Therefore� K � D�� For the third premise� we similarly get that K is not a normal

form if M sub�� K and FIV �K� � fg� The fourth premise is obvious from ����� and ������� As

for the last premise� suppose that M sub�� L 	�n K� that is� for some y� L� and L��

M�M�
sub�� �� y� L��L� 	�n L��L��y� � K�

Therefore� K � I�X � C� from ����� and ������� We now get

M�M� � I�X � C� ������

by Lemma �������

Now� we show ������ Suppose that Ni � J �u� I�X � t�u��� V � for any i� By the induction

hypothesis� M� � J �C� I�X � t
��u���

v
��u� � V � and M� � J �C� I�X � t

��u���
v
��u� � V ��

Therefore� we get

M�� M� � J �u� I�X �
t�u��� v�u� � V ��

Since X is admissible� we get M � J �u� I�X � t�u��� v�u��V � from ������ ������ and �������

�� A term model for the extended system

Case �� M � � v�M � for some v and M �� That is� � � M � �C� ! t fv �CV �

� g is derivable for

some C�� C� and V
� such that C � C� 	C�� We can assume that v �� FTV �Ni� for any i� Let

 � be as � � t fv �CV �

� g� By the induction hypothesis�

M � � I�X � C��� ������

To show ������ we check the premises of Lemma ������� We have M � X � For the second

premise� suppose that M sub�� K for some K� By the de�nition of sub� � we get K � � v�K � for

some K � such that M � �� K�� We get K� � D� from ������� Therefore� the second premise

holds� For the third premise� suppose that M � � v�M � sub�� � v� L� We show that � v� L �

I��X � C� 	C��� Since M � �� L� we get L � I�X � C�� from ������� On the other hand� we get

Ni � J �v� I�X � C��� fg� since v �� FTV �Ni� for any i� Therefore� by the induction hypothesis�

M � � J �v� I�X � C��� �v�v���

Since M � �� L� we get L � J �v� I�X � C���
�v�v��� and therefore� L � J �v� I�X � C��� F IV �L��

by Proposition ������� As for the last premise� it is impossible that M sub�� L 	�n K by the

de�nition of sub� and 	�n � We now get ����� by Lemma �������

Next� we show ������ Suppose that Ni � J �u� I�X � t�u��� V � for any i� Since v �� M � it

is enough to show that M � J �u� I�X � �t�u��� �v�u� � V � by Proposition ������� and we can

assume that v �� u� Since t�u� � �t�u�� by the induction hypothesis�

M � � J �u� I�X � �t�u��� �v�u� � V �� ������

We apply Lemma ������ For the �rst premise� suppose that M sub�� K � � v�K� for some K

and K�� We get K� � J ��u� I�X � �t�u��� �v�u��V � from ������� Suppose that u � FTV �K�

and FIV �K� � � �v�u��V � � fg� Since u � FTV �K ��� FIV �K�� � FIV �K� and M � �� K�� we

get K� � throw u L for some closed term L from ������� Therefore� K is not a normal form�

Thus� the �rst premise holds� For the second premise� if M sub�� L 	�
t
K for some L� then we get

K � J �u� I�X � �t�u��� �v�u��V � from ������ since M � �� K� Since the last premise is trivial�

we get ����� by Lemma ������

Case �� M � M � v for some M � and v� That is� �� � M � �C 	E ! � is derivable for some ���

E and � such that �� � and � � t fv �EDom���	g� We can assume that � � by

Proposition ������ By the induction hypothesis�

M � � I�X � C 	E�� ������

To show ������ we check the premises of Lemma ������� We have M � X � For the second

premise� suppose thatM sub�� K for some K� We show that K � D�� By the de�nition of sub� � we

get K � K� v for some K� such that M � �� K�� We get K� � D� from ������� If FIV �K� � fg�

then we get K� � throw v� L or K� � � v�� L for some v� and L from ������� that is� K is not

a normal form� Thus� we get K � D�� For the third premise� we similarly get that K is not a

normal form if M sub�� K and FIV �K� � fg� The fourth premise is obvious from ������� As for

the last premise� suppose that M sub�� L 	�n K� that is� for some v� and L��

M � v sub�� �� v�� L�� v 	�
n
L��v�v�� � K�

�� An admissible frame ��

We get L� � I�X � C� from ������ by the de�nition of I�X � C 	E�� and therefore� K � I�X � C�

since I�X � C� is a regular type� We now get M � I�X � C� by Lemma �������

Next� we show ������ Suppose that Ni � J �u� I�X � t�u��� V � for any i� By the induction

hypothesis�

M � � J �u� I�X � t�u��� v�u� � V �� ������

We apply Lemma ������ For the �rst premise� suppose that M sub�� K � K� v� We get K� �

J �u� I�X � t�u��� v�u��V � from ������� Suppose that u � FTV �K� and FIV �K�� � v�u��

V � � fg� We show that K is not a normal form� Since FIV �K�� � FIV �K�� we get

FIV �K�� � � v�u� � V � � fg�

If u � FTV �K��� then K � � throw u L for some closed term L from ������� and this implies

that K is not a normal form� On the other hand� if u � v� then FIV �K�� � fg since FIV �K�

FIV �M �� Dom���� v�v�� Therefore� if K� is a normal from� then K� � throw w L or

K� � �w�L for some w and L by ������� This implies that K is not a normal form� Thus� the

�rst premise holds� For the second premise� if M sub�� L 	�
t
K for some L� then we get M � �� K�

and therefore� K � J �u� I�X � t�u��� v�u� � V � from ������� As for the last premise� suppose

that M sub�� L 	�n K for some L and K� that is� M sub�� �� v�� L�� v 	�n L��v�v�� � K for some v�

and L�� We get

L� � J �u� I�X � t�u��� v�u� � V � ������

from ������� If v �� u� then L��v�v�� � J �u� I�X � t�u��� v�u� � V � by Proposition �������

Therefore� we assume that v � u� We have L� � J �v� I�X � E�� F IV �L��� � by ������� Since

 t�u� � t�v� � E and FIV �L�� FIV �M � v�v� � v�u�� we get

L� � J �v� I�X � t�u��� v�u� � V �

by Proposition ������� Therefore� L��v�v�� � J �u� I�X � t�u��� v�u��V � from ������ by Propo�

sition ������� We now get ����� by Lemma ������

Case �� M has one of the other forms� We similarly get ����� and ����� by Lemma ������ and

Lemma ������ respectively�

	�� An admissible frame

De�nition ��� A tag dependency is a �nite mapping which assigns a set of individual variables

to each tag variable in its domain� We use �� ��� � � � to denote tag dependencies� Let u�� � � � � un
be tag variables� and let V�� � � � � Vn be sets of individual variables such that if ui � uj then

Vi � Vj for any i and j� We use fu� �V�� � � � � un �Vng to denote a tag dependency whose domain

is fu�� � � � � ung and which assigns Vi to ui for each i�

De�nition ��� Let � and �� be tag dependencies� We de�ne a tag dependency �t�� as follows�

Dom�� t ��� � Dom��� �Dom����

�� t ����u� �

���
��

��u� � ���u� if u � Dom��� �Dom����

��u� if u � Dom��� and u �� Dom����

���u� if u �� Dom��� and u � Dom����

�� A term model for the extended system

De�nition ��� Let M be a term� Let U and � be a set of individual variables and a tag

dependency� respectively� where ��u� U for any u � Dom���� Frame judgements have the

following form�

U �f M ! �

De�nition ��� We de�ne a formal system for frame judgements�

U � fxg �f x ! �
�var�

U �f c ! �
�const�

U �f M ! � t fu �V g

U �f catch u M ! �
�catch�

U� �f M ! �

U� � U� �f throw u M ! � t fu �U�g
�throw�

U � fxg �f M ! �

U �f �x�M ! �
���I � �x �� ��u� for any u � Dom����

U� �f M ! �� U� �f N ! ��

U� � U� �f M N ! �� t ��
���E �

U �f M ! � t fu �V g

U �f �u�M ! �
�	�I �

U� �f M ! �

U� � U� �f M u ! � t fu �U�g
�	�E �

U� �f M ! �� U� �f N ! ��

U� � U� �f �M� N� ! �� t ��
���I �

U �f M ! �

U �f proj�M ! �
����E �

U �f M ! �

U �f proj�M ! �
����E �

U �f M ! �

U �f inj�M ! �
����I �

U �f M ! �

U �f inj�M ! �
����I �

U� �f L ! �� U� � fxg �f M ! �� U� � fyg �f N ! ��

U� � U� � U� �f case L x�M y�N ! �� t ���U��fxg�t ���U��fyg�
���E �

We presents a some basic properties of this formal system�

Proposition ��� Let M be a term� Let � be an individual context� C a formula� and a tag

context� If � �M �C ! is derivable� then Dom��� �f M ! v is derivable�

Proof� Straightforward induction on the derivation of � �M �C ! �

Proposition ��� If U �f M ! � is derivable� then FIV �M � U and FTV �M � Dom����

�� An admissible frame ��

Proof� By induction on the derivation of U �f M ! ��

De�nition ��� Let � and �� be tag dependencies� We de�ne a relation � � �� as follows� The

relation � � �� holds if and only if

� Dom��� Dom����� and

� ��u� ���u� for any u � Dom����

Proposition ��� Let U �f M ! � be a d�derivable frame judgement�

�� If U U � and � � ��� then U � �f M ! �� is also d�derivable�

	� U �fyg�fxg� �f M �y�x� ! ��fyg�fxg� is also d�derivable�

� If ��v�u� is well de�ned� then U �f M �v�u� ! ��v�u� is also d�derivable�

Proof� By simultaneous inductions on d�

Proposition ��
 Let x and u be as x �� FIV �M � and u �� FTV �M ��

�� If U � fxg �f M ! � is derivable� then U �f M ! ��fg�fxg� is also derivable�

	� If U �f M ! � t fu �V g is derivable� then U �f M ! � is also derivable�

Proof� Straightforward induction on the derivations�

Proposition ���� If U� �f N ! �� and U� � fxg �f M ! �� are derivable� then U� � U� �f
M �N�x� ! �� t ���U��fxg� is also derivable�

Proof� By induction on the depth of the derivation of U� � fxg �f M ! ��� Suppose that

U� �f N ! �� and U� � fxg �f M ! �� are derivable� First� suppose also that x �� FIV �M ��

that is�M �N�x� �M � Since U��fxg �f M ! �� is derivable� so is U� �f M ! ���fg�fxg� by Propo�

sition ������ and this implies that U��U� �f M ! ��t���U��fxg� is derivable by Proposition ������

Therefore� we now assume that

x � FIV �M �� ������

By cases according to the form of M �

Case �� M � y for some individual variable y� In this case� y � U� � fxg� If M � x� then

we can derive U� � U� �f M �N�x� ! �� t ���Dom�U���fxg� by applying Proposition ����� to the

derivation of U� �f N ! �� since M �N�x� � N and C � A in this case� If M �� x� then we can

derive it by �var� since M �N�x� � y and y � U� in this case�

Case �� M � catch u M � for some u and M �� In this case� the following judgement is derivable

for some V �

U� � fxg �f M
� ! �� t fu �V g

We can assume that u �� Dom���� by Proposition ������ By the induction hypothesis� we have a

derivation of

U� � U� �f M
��N�x� ! �� t ��� t fu �V g��Dom�U���fxg�� ������

Since u �� Dom����� we getM �N�x� � catch u �M ��N�x��� By applying �catch� to ������� we get

U� � U� �f M �N�x� ! �� t ���Dom�U���fxg��

�� A term model for the extended system

Case �� M � throw u M � for some u and M �� In this case� the following judgement is derivable

for some U �
� and � such that U

�
� U� � fxg and �� � � t fu �U �

�g�

U �
� �f M

� ! �

We get x � FIV �M �� from ������� that is� x � U �
�� Let U be as U � U �

�
 fxg� Note that

U �
� � U � fxg� Therefore� by Proposition ������

U � fxg �f M
� ! ��

By the induction hypothesis� we have a derivation of

U� � U �f M
��N�x� ! �� t ��U��fxg��

Since M �N�x� � throw u �M ��N�x��� by applying �throw��

U� � U �f M �N�x� ! �� t ��U��fxg�t fu �U� � Ug�

Since U U�� by Proposition ����� again�

U� � U� �f M �N�x� ! �� t ��U��fxg�t fu �U� �Ug�

Note that ��U��fxg�t fu �U� � Ug � ���U��fxg� because �� � � t fu �U � fxgg and x �� U �

Case �� M � � y�M � for some y and M �� In this case� y �� ���u� for any u � Dom���� and the

following judgement is derivable�

U� � fxg � fyg �f M
� ! ��

We can assume that y �� U� by Proposition ������ and get M ��N�x� � � y� �M �N�x��� By the

induction hypothesis� we have a derivation of

U� � U� � fyg �f M
��N�x� ! �� t ���U��fxg�� �����

Since y �� ���u� for any u � Dom���� and y �� U�� we get y �� ��� t ���U��fxg���u� for any

u � Dom��� t ���U��fxg��� Therefore� we can derive U� �U� �f � y� �M ��N�x�� ! �� t ���U��fxg�

by applying ���I � to ������

Case �� M has one of the other forms� Similarly� U� � U� �f M �N�x� ! �� t ���U��fxg� is

derivable�

Lemma ���� If U �f M ! � is derivable and M 	�
t
throw v N � then U �f throw v N ! � is

also derivable�

Proof� By induction on the depth of the derivation of U �f M ! �� Suppose that U �f M ! � is

derivable and M 	�
t
throw v N � By cases according to the form of M �

Case �� M � x for some individual variable x� This is impossible because M 	�
t
throw v N �

�� An admissible frame ��

Case �� M � catch u M � for some u and M �� In this case� the following judgement is derivable

for some V �

U �f M
� ! � t fu �V g ������

We get u �� FTV �throw v N � and

M � � throw v N or M � 	�
t
throw v N

fromM 	�
t
throw v N � Therefore� from ������ or the induction hypothesis on �������

U �f throw v N ! � t fu �V g�

We get U �f throw v N ! � by Proposition ����� since u �� FTV �throw v N ��

Case �� M � throw u M � for some u and M �� In this case� the following judgement is derivable

for some U � and �� such that U � U and � � �� t fu �U �g�

U � �f M
� ! �� ������

We get M � � throw v N or M � 	�
t
throw v N from M 	�

t
throw v N � Therefore� from ������

or the induction hypothesis on �������

U � �f throw v N ! ���

We get U �f throw v N ! � by Proposition ����� since U � U and �� � ��

Case �� M � �x�M � for some x and M �� In this case� x �� ��u� for any u � Dom��� and the

following judgement is derivable�

U � fxg �f M
� ! � ������

We get x �� FIV �throw v N � and

M � � throw v N or M � 	�
t
throw v N

fromM 	�t throw v N � Therefore� from ������ or the induction hypothesis on �������

U � fxg �f throw v N ! ��

We get U �f throw v N ! � by Proposition ����� since x �� FIV �throw v N ��

Case �� M has one of the other forms� Similarly� U �f throw v N ! � is derivable�

Lemma ���� If U �f M ! � is derivable and M 	�n N � then U �f N ! � is also derivable�

Proof� By induction on the depth of the derivation of U �f M ! �� Suppose that U �f M ! � is

derivable and M 	�n N � By cases according to the form of M �

Case �� M � catch u N and u �� FTV �N �� In this case� U �f N ! � t fu �V g is derivable for

some V � We get U �f N ! � by Proposition ����� since u �� FTV �N ��

�� A term model for the extended system

Case �� M � catch u �throw u N � and u �� FTV �N �� The following judgement is derivable

for some V � U � and �� such that U � U and � t fu �V g � �� t fu �U �g�

U � �f N ! �
�

Since U � U and �� � �tfu �V g� U �f N ! �tfu �V g is derivable by Proposition ������ Therefore�

U �f N ! � is also derivable by Proposition ����� since u �� FTV �N ��

Case �� M � ��x�M��M� and N � M��M��x� for some x� M� and M�� The following two

judgements are derivable for some U�� U�� �� and �� such that U � U� � U�� � � �� t �� and

x �� ���u� for any u � Dom����

U� � fxg �f M� ! �� ������

U� �f M� ! �� ������

We get U �f M��M��x� ! �� t ���U��fxg� from ������ and ������ by Proposition ������� where

�� t ���U��fxg� � � since x �� ���u� for any u � Dom�����

Case �� M � ��u�M �� v and N � M ��v�u� for some u� v and M �� The following judgement is

derivable for some U �� �� and V such that U � U and � � �� t fv �U �g�

U � �f M
� ! �� t fu �V g

By Proposition ������ U � �f M
��v�u� ! ���v�u�t fv �V g is derivable� and since U � U � by Propo�

sition ����� again�

U �f M
��v�u� ! ���v�u� t fv �V g�

Since V U � and ���u� U �

���v�u� t fv �V g � ���v�u� t fv �U �g � �� t fv �U �g � ��

Therefore� U �f M
��v�u� ! � is derivable by Proposition ������

Case �� M has one of the other forms� Similar�

Lemma ���� If U �f M ! � is derivable and M 	� N � then U �f N ! � is also derivable�

Proof� Straightforward from Lemma ������ and Lemma �������

Proposition ���� If U �f M ! � is derivable and M � N � then U �f N ! � is also derivable�

Proof� By induction on the depth of the derivation of U �f M ! �� Suppose that U �f M ! � is

derivable and M � N � If M 	� N � then trivial by Lemma ������ Therefore we can assume

that M � N and M �	� N � By cases according to the form of M � A typical one is the case that

M � throw u M � for some u and M �� In this case�

U � �f M
� ! ��

is derivable for some U � and �� such that U � U and � � �� t fu �U �g� Since M � N and

M �	� N � M � � N � and N � throw u N � for some N �� Therefore� U � �f N � ! �� is derivable

by the induction hypothesis� We get U �f throw u N � ! � by applying �throw�� The proofs for

other cases are just similar�

�� An admissible frame �

De�nition ���� We de�ne a set of term X� as follows�

X� � fM j U �f M ! � is derivable for some U and �g�

Proposition ���� X� is a frame�

Proof� X� is a type by Proposition ������� and is regular by Proposition ������ x � X� for any

x� since fxg �f x ! fg is derivable� On the other hand� M� N � X� implies M �N�x� � X� by

Proposition ������� Finally� by Proposition ������ we get M � X� for any term M such that

� �M �C ! is derivable for some �� C and �

De�nition ���� Let n be a natural number� u a tag variable� and T a type� We de�ne

J �
n �u� T� V � as follows�

� if M � throw u K� then K � T �

� ifM is a normal form such that u � FTV �M � and FIV �M ��V � fg� then M � throw u

L for some closed term L�

� if M � catch v L and v �� u� then L � Jn�u� T� V ��

� if M � throw v L� then L � Jn�u� T� V ��

� if M � � y� L� then L � Jn�u� T� V
 fyg��

� if M � L� L�� then L�� L� � Jn�u� T� V ��

� if M � �L�� L��� then L�� L� � Jn�u� T� V ��

� if M � proji L for some i �i � �� ��� then L � Jn�u� T� V ��

� if M � inji L for some i �i � �� ��� then L � Jn�u� T� V ��

� if M � case L� y��L� y��L�� then

� L� � Jn�u� T� V �� and

� for any i �i � �� ��� there exists some V �
i such that V

�
i �FIV �L���fyig� V and

Li � Jn�u� T� V �
i ��

� if M � � v� L and v �� u� then L � Jn�u� T� V �� and

� if M � Lv� then L � Jn�u� T� V ��

Proposition ���� M � Jn�u� T� V � if and only if

if M �k� K for some k �k � n�� then M � J �
n�k�u� T� V ��

Proof� Obvious from the de�nitions�

Lemma ���
 Let n be a natural number� u a tag variable� and T a type� If

�� M sub�k
� K implies K � J �
n�k�u� T� V ��

	� M sub�k
� L 	�
t
K implies K � Jn�k���u� T� V �� and

�� A term model for the extended system

� if M sub�k
� L 	�n K for some L� then K � Jn�k���u� T� V ��

then M � Jn�u� T� V ��

Proof� Suppose that M �k� K� There are three possible cases as follows�

�� M sub�k
� K�

�� M sub�l
� M ��throw v L�z� 	�
t
throw v L �k�l��� K for some M �� z� v and L such that

z � FIV �M �� and M � �� z�

� M sub�l
� M � 	�
n
L �k�l��� K for some M � and L�

It is enough to show that K � J �
n�k�u� T� V �� In the �rst case� we get K � J �

n�k�u� T� V � from

the �rst premise� In the second case� K � J �
n�k�u� T� V � because throw v L � Jn�l���u� T� V �

by the second premises� As for the third case� L � Jn�l���u� T� V � from the last premise�

Therefore� K � J�
n�k�u� T� V ��

Lemma ���� Let M and N be terms� Let n be a natural number� u a tag variable� and T a

type� If

�� U �f M ! � is drivable�

	� M � Jn�u� T� V
 fxg��

� N � X��

� N � Jn�u� T� V ��

�� x �� ��u�� and

�� M �N�x� � D�

then M �N�x� � Jn�u� T� V ��

Proof� By induction on the lexicographic ordering of n and jM j� and by cases according to the

form of M � Suppose that U �f M ! � and N � X� are drivable� M� N � Jn�u� T� V �� x �� ��u�

and M �N�x� � D�

Case �� M � y for some individual variable y� Trivial because M �N�x� � M or M �N�x� � N

in this case�

Case �� M � catch v M � for some v and M �� We can assume that v �� FTV �N ��fug� that is�

M �N�x� � catch v �M ��N�x��� Since U �f M ! � is derivable� U �f M � ! � t fv �V �g is derivable

for some V �� On the other hand� we get M � � Jn�u� T� V
 fxg� from M � Jn�u� T� V
 fxg��

and get x �� ��tfv �V �g��u� from x �� ��u� because u �� v� Therefore� by the induction hypothesis�

M ��N�x� � Jn�u� T� V �� ������

We use Lemma ������ to show that M �N�x� � Jn�u� T� V �� For the �rst premise� suppose that

M �N�x� sub�k
� K � catch v K� for some K and K�� We show that K � J�
n�k�u� T� V �� We

get K� � Jn�k�u� T� V � from ������� Suppose that u � FTV �K� and FIV �K� � V � fg� Since

�� An admissible frame ��

u � FTV �K��� FIV �K�� � FIV �K� and M ��N�x� �� K �� we get K� � throw u L for some

closed term L from ������� and therefore� K is not a normal form� Thus� the �rst premise holds�

For the second premise� suppose that M �N�x� sub�k
� L 	�
t
K for some L� By the de�nition of sub��

we get M ��N�x� �k��� K� Therefore� K � Jn�k���u� T� V � from ������� For the last premise�

suppose that M �N�x� sub�k
� L 	�n K for some k �k � n� and L� There are two possible cases�

�� catch v �M ��N�x�� sub�k
� catch v K 	�n K�

�� catch v �M ��N�x�� sub�k
� catch v �throw v K� 	�n K�

where v �� FTV �K� in both cases� In the �rst case� since M ��N�x� sub�k��
� K� we get K �

Jn�k���u� T� V � from ������� On the other hand� in the second case� since M
��N�x� sub�k��
�

throw v K� we also get K � Jn�k���u� T� V � from ������� Thus� the last premise holds� We

now get M �N�x� � Jn�u� T� V � by Lemma �������

Case �� M � throw v M � for some v and M �� In this case� M �N�x� � throw v �M ��N�x���

Since U �f M ! � is derivable� U � �f M � ! �� is derivable for some U � and �� such that U � U and

� � ��tfv �U �g� We can assume that � � �� by Proposition ������ Note that FIV �M �� U �� On

the other hand� M � � Jn�u� T� V
 fxg� from M � Jn�u� T� V
 fxg�� Since x �� ��u� � ���u��

by the induction hypothesis�

M ��N�x� � Jn�u� T� V �� �����

We apply Lemma ������� For the �rst premise� suppose that M �N�x� sub�k
� K � throw v K� for

some K and K�� We show that K � J �
n�k�u� T� V �� We get K

� � J�
n�k�u� T� V � from ������

If u � v� then we get M �N�x� � M since x �� ��u� � ��v� � U � � FIV �M ��� and therefore�

K� � T from M � Jn�u� T� V
 fxg�� Next� suppose that u � FTV �K�� FIV �K� � V � fg

and K is a normal form� If u � FTV �K��� then we get K� � throw u L for some L from

������ Since K is normal� we get u �� FTV �K��� that is� u � v and M �N�x� � M � again�

This implies that K� is a closed term since M � Jn�u� T� V
 fxg�� For the second premise�

suppose that M �N�x� sub�k
� L 	�
t
K for some L� By the de�nition of sub� � we get M ��N�x� �k��� K�

and therefore� K � Jn�k���u� T� V � from ������ For the last premise� it is impossible that

M �N�x� sub�k
� L 	�
n
K by the de�nition of sub� and 	�

n
� Therefore� we get M �N�x� � Jn�u� T� V �

by Lemma �������

Case �� M � � y�M � for some y and M �� We can assume that y �� FIV �N �� that is�M �N�x� �

� y� �M ��N�x��� Since U �f M ! � is derivable� so is U �fyg �f M
� ! �� We getM � � Jn�u� T� V

fxg
 fyg� from M � Jn�u� T� V
 fxg�� On the other hand� N � Jn�u� T� V
 fyg� since

y �� FIV �N �� Therefore� by the induction hypothesis�

M ��N�x� � Jn�u� T� V
 fyg�� �����

We use Lemma ������ to show � y� �M ��N�x�� � Jn�u� T� V �� For the �rst premise� suppose

that M �N�x� sub�k
� K� By the de�nition of sub�� we get K � � y�K� for some K� such that

M ��N�x� �k� K�� We get K� � Jn�k�u� T� V
fyg� from ������ On the other hand� suppose that

u � FTV �K�� FIV �K��V � fg andK is a normal form� that is� u � FTV �K��� FIV �K ����V

fyg� � fg and K� is normal� Therefore� K� � throw u L for some closed term L from ������

and this implies K 	�
t
K�� that is� a contradiction� Thus� the �rst premise holds� For the second

premise� suppose that M �N�x� sub�k
� L 	�
t
K for some L� that is� M ��N�x� �k��� K� Therefore�

�� A term model for the extended system

K � Jn�k���u� T� V
 fyg� from ������ We get K � Jn�k���u� T� V � by Proposition �������

Since the last premise is trivial� we get M �N�x� � Jn�u� T� V � by Lemma �������

Case �� M � M�M� for some M� and M�� In this case� M �N�x� � �M��N�x�� �M��N�x���

Since U �f M ! � is derivable� U� �f M� ! �� and U� �f M� ! �� are derivable for some U�� U�� ��
and �� such that U � U� � U� and � � �� t ��� We also get M�� M� � Jn�u� T� V
 fxg� from

M � Jn�u� T� V
 fxg�� Therefore� by the induction hypothesis�

M��N�x�� M��N�x� � Jn�u� T� V �� �����

We use Lemma ������� For the �rst premise� suppose that M �N�x� sub�k
� K � K�K�� that

is� Mi�N�x�
�k� Ki for any i �i � �� ��� We get K�� K� � Jn�k�u� T� V � from ������ On the

other hand� suppose that u � FTV �K�� FIV �K� � V � fg and K is a normal form� that is�

u � FTV �Ki�� FIV �Ki� � V � fg and Ki is normal for some i� Therefore� Ki � throw u

L for some closed term L from ������ and this implies K 	�
t
Ki� that is� a contradiction� For

the second premise� suppose that M �N�x� sub�k
� L 	�
t
K for some L� that is� Mi�N�x�

�k��� K for

some i �i � �� ��� We get K � Jn�k���u� T� V � from ������ For the last premise� suppose that

M �N�x� sub�k
� L 	�n K� that is� for some y� L� and L��

�M��N�x�� �M��N�x��
sub�k
� �� y� L��L� 	�n L��L��y� � K�

By Proposition ������� we get � y� L� � Jn�k�u� T� V � and L� � Jn�k�u� T� V � from ������

Therefore� L� � Jn�k�u� T� V
 fyg� and L� � Jn�k�u� T� V �� By Proposition ������ and

Proposition �������

L�� L� � Jn�k���u� T� V �� ����

On the other hand� U � �f M��N�x� ! �� is derivable for some U � and �� by Proposition ������

since M�� N � X�� and therefore U � �f � y� L� ! �� is also derivable by Proposition ������ since

M��N�x�
�� � y� L�� That is�

U � � fyg �f L� ! �
� �����

is derivable and

y �� ���u�� �����

As for L�� we get M��N�x� � X� from M�� N � X� by Proposition ������� That is� L� � X� by

Proposition ������� Moreover� we get L��L��y� � D fromM �N�x� � D sinceM �N�x� �� L��L��y��

Therefore� by the induction hypothesis� we get

K � L��L��y� � Jn�k���u� T� V �

from ����� ����� and ������ Thus� the last premise also holds� We now get M �N�x� �

Jn�u� T� V � by Lemma �������

Case �� M � � v�M � for some v and M �� We can assume that v �� FTV �N � � fug� that is�

M �N�x� � � v� �M ��N�x��� Since U �f M ! � is derivable� so is U �f M � ! � t fv �V �g for some

V �� On the other hand� we get M � � Jn�u� T� V
 fxg� from M � Jn�u� T� V
 fxg�� and get

x �� �� t fv �V �g��u� from x �� ��u� because u �� v� Therefore� by the induction hypothesis�

M ��N�x� � Jn�u� T� V �� �����

�� An admissible frame ��

We use Lemma ������ For the �rst premise� suppose that M �N�x� sub�k
� K � � v�K�� We show

that K � J �
n�k�u� T� V �� We get K

� � J �
n�k�u� T� V � from ����� since M ��N�x� �k� K �� If

u � FTV �K� and FIV �K� � V � fg� then since u � FTV �K ��� we get K� � throw u L

for some L from ������ that is� K is not normal� Therefore� the �rst premise holds� For the

second premise� suppose that M �N�x� sub�k
� L 	�
t
K for some L� By the de�nition of sub� � we

get M ��N�x� �k��� K� and therefore� K � Jn�k���u� T� V � from ������ Since the last premise is

trivial� we get ����� by Lemma �������

Case �� M �M � v for some M � and v� In this case� M �N�x� � �M ��N�x�� v� Since U �f M ! �

is derivable� U � �f M � ! �� is derivable for some U � and �� such that U � U and � � �� tfv �U �g�

We can assume that � � �� by Proposition ������ Note that FIV �M �� U �� On the other hand�

M � � Jn�u� T� V
 fxg� from M � Jn�u� T� V
 fxg�� Since x �� ��u� � ���u�� by the induction

hypothesis�

M ��N�x� � Jn�u� T� V �� �����

We use Lemma ������ For the �rst premise� suppose that M �N�x� sub�k
� K � K� v� We get K� �

J �
n�k�u� T� V � from ����� since M

��N�x� �k� K�� Suppose that u � FTV �K� and FIV �K��V �

fg� We show that K is not normal� If u � FTV �K ��� then K � throw u L for some closed term

L by ������ On the other hand� u �� FTV �K�� implies u � v� and therefore� M �N�x� �M since

x �� ��u� � ��v� � U � � FIV �M ��� Therefore� K is not normal since M � Jn�u� T� V
 fxg�

and M �k� K � K� v� For the second premise� suppose that M �N�x� sub�k
� L 	�
t
K for some L� By

the de�nition of sub� � we get M ��N�x� �k��� K� and therefore� K � Jn�k���u� T� V � from ������

For the last premise� suppose that M �N�x� sub�k
� L 	�n K� that is� for some L� and w�

M ��N�x� v sub�k
� ��w�L�� v 	�n L��v�w� � K� �����

We can assume that w �� u� Since M ��N�x� �k� �w�L�� we get �w�L� � Jn�k�u� T� V � from

������ that is�

L� � Jn�k�u� T� V ��

Therefore� if v �� u� then we get K � L��w�v� � Jn�k�u� T� V � by Proposition ������� that

is� K � Jn�k���u� T� V � by Proposition ������� On the other hand� if v � u� then we get

M �N�x� � M since x �� ��u� � ��v� � U � � FIV �M ��� Therefore� K � Jn�k���u� T� V �

since M � Jn�u� T� V
 fxg� and M �k��� K� Thus� the last premise holds� We now get

M �N�x� � Jn�u� T� V � by Lemma �������

Case �� M has one of the other forms� The proof is similar�

Theorem ���� X� is an admissible frame�

Proof� Since X� is a frame by Proposition ������� we show that X� is admissible� Suppose that

M� N � X� � Jn�u� T� V �� and �����

M N � D� ������

By Proposition ������� it is enough to show that

M N � Jn�u� T� V ��

�� A term model for the extended system

We use Lemma ������� For the �rst premise� suppose that M N sub�k
� K � K�K�� that is�

M �k� K� and N �k� K�� We get K�� K� � Jn�k�u� T� V � from ������ On the other hand�

suppose that u � FTV �K�� FIV �K� � V � fg and K is a normal form� Since u � FTV �M �

and FIV �K�� � V � fg� or u � FTV �N � and FIV �K�� � V � fg� we get M � throw u L or

N � throw u L for some closed term L from ������ and this implies K 	�
t
throw u L� that

is� a contradiction� For the second premise� suppose that M N sub�k
� L 	�
t
K for some L� that

is� M �k��� K or N �k��� K� We get K � Jn�k���u� T� V � from ������ For the last premise�

suppose that M N sub�k
� L 	�
n
K� that is� for some y� L� and L��

M N sub�k
� �� y� L��L� 	�n L��L��y� � K�

We get � y� L� � Jn�k�u� T� V � and L� � Jn�k�u� T� V � from ����� by Proposition �������

Therefore� L� � Jn�k�u� T� V
 fyg� and L� � Jn�k�u� T� V �� By Proposition �������

L� � Jn�k���u� T� V
 fyg�� ������

L� � Jn�k���u� T� V �� ������

On the other hand� � y� L� � X� by Proposition ������ since M
�� � y� L�� That is� for some U

and ��

U � fyg �f L� ! � �����

is derivable and

y �� ��u�� ������

As for L�� we get L� � X� by Proposition ������ since N � X�� Moreover� we get L��L��y� � D

fromM N � D since M N �� L��L��y�� Therefore� by Lemma ������� we get

L��L��y� � Jn�k���u� T� V �

from ������� ������� ����� and ������� Thus� the last premise also holds� Therefore� we get

M N � Jn�u� T� V � by Lemma �������

	�� Strong normalizability and normal forms

We get strong normalizability of well�typed terms from the discussion on the term model� The

term model also provides a results on the form of well�typed normal forms�

Theorem ��� Let M be a term� If � � M �C ! is derivable for some �� C and � then M

is strongly normalizable�

Proof� Since x � I�X�� ��x�� for any x � Dom���� M � I�X�� C� by Theorem ���� on X��

Therefore� M is strongly normalizable by the de�nition of I�X�� C��

Theorem ��� Let M be a normal form such that FIV �M � � fg� If � �M �C ! is derivable

for some �� C and � then one of the following holds�

�� M � throw u L for some closed term L�

	� C is an atomic formula� and M is a constant�

�� Realizability interpretation of Lc�t ��

� C � A�B for some A and B� and M � � y� L for some y and L�

� C � A�B for some A and B� and M � �L�� L�� for some L� and L��

�� C � A�B for some A and B� and M � inji L for some i �i � �� �� and L�

�� C � A	B for some A and B� and M � � v� L for some v and L�

Proof� Let x�� � � � � xm be as Dom��� � fx�� � � � � x�g� and suppose that � � M �C ! is deriv�

able� Since FIV �M � � fg� fg � M �C ! �fg�fx�g� � � � � fg�fxmg� is also derivable by Proposi�

tion ������� Therefore� by Theorem ���� on X��

M � I�X�� C� �J �u� I�X��
t�u��� fg�

for any u� Since M is normal and FIV �M � � fg� if u � FTV �M �� then M � throw u L for

some closed term L� On the other hand� if FTV �M � � fg� then one of � through � holds since

M � I��X�� C� and FIV �M � � fg�

	�� Realizability interpretation of Lc�t

Let X be an admissible frame� and let A be a mapping which assigns a subset of Const to each

atomic type� The realizability for Lc�t is de�ned relatively to X and A�

De�nition ��� �Realizability of types� Let M be a term� and A a type� We de�ne a

relation r between terms and types as follows�

M r A i� M � I�X � A��

De�nition ��� �Realizability of tag contexts� Let M be a term� and a tag context�

We de�ne a relation r between terms and tag contexts as follows�

M r i� for any u� M � J �u� I�X � t�u��� v�u���

where I�X � t�u�� � fg and v�u� � fg if u �� Dom� ��

De�nition ��� �Interpretation� We de�ne the interpretation of typing judgements as fol�

lows� The relation

fx� �A�� � � � � xm �Amg ��M �C ! fu� �B
V�
� � � � � � un �B

Vn
n g

holds if and only if for any terms K�� � � � �Km such that Ki r Ai and xj �� FIV �Ki� for any i and

j �� � i� j � m��

�� M �K��x�� � � � �Km�xm� r C� and

�� if Ki r for any i �� � i � m�� then

M �K��x�� � � � �Km�xm� r �FIV �K���fx�g� � � � � F IV �Km��fxmg��

The following soundness theorem assures us that we can regard the derivations of Lc�t as

programs which satisfy the speci�cation de�ned by the realizability interpretation de�ned above�

Theorem ��� �Soundness of Lc�t� If � �M �C ! is derivable in Lc�t� then � �� M �C !

holds�

Proof� Straight forward from Theorem �����

Chapter �

Concluding remarks

We have presented two typing systems LCBV

c�t and Lc�t which capture the catch�throw mechanism

in the notion of �proofs as programs�� Although they are just variants of the standard construc�

tive logic� they admit extra conclusions besides the main one� By this feature� we can naturally

construct proofs which handle the exceptional situations e�ciently as in practical programming

languages� We showed the direct correspondence between such proofs and programs which make

use of the catch and throw mechanism by certain realizability interpretations� The soundness

theorems of the systems relative to these interpretations assure that they can still be basises for

the formal method of computer programming� Moreover� the non�determinism introduced with

the catch and throw mechanism does not break this paradigm� because we can take the mean�

ings of programs by a realizability interpretation independent of the evaluation strategy� that is�

reductions do not preserve the meaning of programs as values� but do preserve the meaning as

realizers�

From a computational point of view� the catch and throw mechanism provides only a restricted

access to the current continuation� and does not provide the full access as the �rst class objects�

Therefore� it could be regarded as a trivial subcase of more powerful facilities such as call�cc

of Scheme� However� from the viewpoint of the notion of �proofs as programs�� it assures

correct programs without any of the restrictions required for the case of such more powerful ones

���� ��� ���� And more importantly� the catch and throw mechanism has a natural counterpart

in the reasoning of programmers� that is� a characteristic way of exception handling� We doubt

whether there also exists such a natural reasoning corresponding to the use of call�cc and its

variants beyond the catch�throw�

From the viewpoint of program veri�cation� our work can be regarded as a higher�order ex�

tension of the work concerning goto statements in Hoare
s logic� whose main idea is also the

existence of extra post�conditions ��� ��� However� it should be noted that our work captures

the logic of programmers behind the facilities for non�local exit rather than their computational

behavior� In this sense� the catch and throw mechanism is just a sample of possible realizers for

our logic�

There remain some problems which have not been discussed in this thesis� We have considered

only a propositional fragment� and have not investigated the relation between the catch and throw

mechanism and mathematical inductions� Actually� the mechanism is often used in subroutines

that call themselves recursively in practical programming� We could expect that the standard

��

rules for mathematical inductions would work as well from just a logical point of view� but more

intensive investigation of the practice should be done in order to capture the class of proofs� that

is� the class of programs� used in practical programming�

Bibliography

��� S� Alagi$c and M� A� Arbib� The Design of Well�Structured and Correct Programs� Springer�

Verlag� �����

��� M� A� Arbib and S� Alagi$c� Proof Rules for Gotos� Acta Informatica� Vol� ��� pp� �������

�����

�� F� Barbanera ad S� Berardi� A Symmetric Lambda Calculus for �Classical� Program Extrac�

tion� Theoretical Aspects of Computer Software� M� Hagiya and J� C� Mitchell� eds�� Lecture

Notes in Computer Science ���� pp� �������� Springer�Verlag� �����

��� H� P� Barendregt� The Lambda Calculus� Its Syntax and Semantics� North�Holland� �����

��� R� L� Constable� et al�� Implementing Mathematics with the Nuprl Proof Development Sys�

tem� Prentice�Hall� �����

��� T� Coquand and G� Huet� The Calculus of Construction� Information and Computation�

Vol� ��� pp� ������� �����

��� M� Felleisen� D� Friedman� E� Kohlbecker� and B� Duba� A syntactic theory of sequential

control� Theoretical Computer Science� Vol� ����� pp� ������� �����

��� H� Friedman� Classically and intuitionistically provably recursive functions� Higher Set The�

ory� D� S� Scott and G� H� Muller� eds�� Lecture Notes in Mathematics ���� pp� ������

Springer�Verlag� �����

��� J��Y� Girard� A new constructive logic� classical logic�Mathematical Structures in Computer

Science� Vol� �� pp� �������� �����

���� J��Y� Girard� Y� Lafont and P� Taylor� Proofs and Types� Cambridge University Press� �����

���� T� G� Gri�n� A formulae�as�types notion of control� Conf� Rec� ACM Symp� on Principles

of Programming Languages� pp� ������ �����

���� S� Hayashi� Singleton� Union and Intersection Types for Programs� Theoretical Aspects of

Computer Software� T� Ito and A�R� Meyer� eds�� Lecture Notes in Computer Science ����

pp� ������� Springer�Verlag� �����

��� S� Hayashi and H� Nakano� PX� A Computational Logic� The MIT Press� �����

���� W� A� Howard� The Formulae�as�types Notion of Constructions� To H� B� Curry� Essays on

Combinatory Logic� Lambda Calculus and Formalism� pp� �������� Academic Press� �����

Bibliography �

���� B� W� Kernighan and D� M� Ritchie� The C programming language �	nd ed��� Prentice�Hall�

�����

���� S� C� Kleene� Introduction to Metamathematics� North�Holland� �����

���� P� J� Landin� The mechanical evaluation of expressions� Computer Journal� Vol� ����� �����

���� S� Maehara� Eine Darstellung intuitionistischen Logik in der Klassishen� Nagoya Math� Jour�

nal� Vol� �� pp� ������ �����

���� P� Martin�L%of� Constructive mathematics and computer programming� Logic� Methodology�

and Philosophy of Science VI� L� J� Choen� et al�� eds�� North�Holland� pp� ������� �����

���� C� R� Murthy� An evaluation semantics for classical proofs� Proc� �th Annual IEEE Symp�

on Logic in Computer Science� pp� ������� �����

���� C� R� Murthy� Classical Proofs as Programs� How� What and Why� Technical Report TR

����	��� Department of Computer Science� Cornell University� �����

���� C� R� Murthy� A Computational Analysis of Girard
s Translation and LC� Proc� �th Annual

IEEE Symp� on Logic in Computer Science� pp� ������ �����

��� H� Nakano� A Constructive Formalization of the Catch and Throw Mechanism� Proc� �th

Annual IEEE Symp� on Logic in Computer Science� pp� ������ �����

���� H� Nakano� The Non�deterministic Catch and Throw Mechanism and Its Subject Reduction

Property� Logic� Language and Computation� N� D� Jones� et al�� eds�� Lecture Notes in

Computer Science ���� pp� ������ Springer�Verlag� �����

���� H� Nakano� A constructive logic behind the the catch and throw mechanism� Annals of Pure

and Applied Logic� Vol� ��� pp� ������� �����

���� N� N� Nepejvoda� A bridge between constructive logic and computer programming� Theo�

retical Computer Science� Vol� ��� pp� ������� �����

���� M� Parigot� Free Deduction� An Analysis of �Computations� in Classical Logic� Proc� Rus�

sian Conf� on Logic Programming� A� Voronkov� ed�� Lecture Notes in Computer Science

���� pp� ������ Springer�Verlag� �����

���� M� Parigot� ���Calculus� An Algorithmic Interpretation of Classical Natural Deduction�

Proc� Int�l Conf� on Logic Programming and Automated Reasoning� Lecture Notes in Com�

puter Science ���� pp� �������� Springer�Verlag� �����

���� M� Parigot� Classical Proof as Programs� Computational logic and theory� Lecture Notes in

Computer Science ��� G� Gottlob� et al�� eds�� pp� ������� Springer�Verlag� ����

��� G� D� Plotkin� Call�by�name� call�by�value and the ��calculus� Theoretical Computer Science�

Vol� �� pp� �������� �����

��� N� J� Rehof and M� H� S&rensen� The �
�calculus� Theoretical Aspects of Computer Software�

M� Hagiya and J� C� Mitchell� eds�� Lecture Notes in Computer Science ���� pp� ��������

Springer�Verlag� �����

� Bibliography

��� G� L� Steele� Common Lisp� The Language� Digital Press� �����

�� K� Sch%utte� Vollst�andige Systeme Modaler und Intuitionistischer Logik� Springer�Verlag�

�����

��� G� Takeuti� Proof theory �	nd ed��� North Holland� �����

��� Y� Takayama� Extraction of Redundancy�free Programs from Constructive Natural Deduc�

tion Proofs� Journal of Symbolic Computation� Vol� ��� pp� ������ �����

��� M� Tatsuta� Program Synthesis Using Realizability� Theoretical Computer Science� Vol� ���

pp� ����� �����

