The Non-deterministic Catch and Throw Mechanism and Its Subject Reduction Property

Hiroshi Nakano

Department of Applied Mathematics and Informatics, Ryukoku University, Seta, Otsu, 520-21, Japan nakano@rins.ryukoku.ac.jp

Abstract. A simple programming language and its typing system is introduced to capture the catch and throw mechanism with its non-deterministic feature. The subject reduction property of the system, which compensates for the unpleasant feature of the non-determinism, is shown.

1 Introduction

The catch and throw mechanism is a programming facility for non-local exit which plays an important role when programmers handle exceptional situations. In a previous paper [4], the author showed that the catch/throw mechanism corresponds to a variant formulation of Genzen's LJ following the Curry-Howard isomorphism in the opposite direction, and gave a realizability interpretation to the formal system by an abstract stack machine, in which the computational behavior of the mechanism was treated by a fixed evaluation strategy, and therefore the result of evaluation was unique. However, generally, the catch/throw mechanism introduces a non-determinism to evaluation processes, that is, the result of evaluation depends on the evaluation strategy. For example, let M be a term defined by

$$M = \mathbf{catch}\ u\ ((\lambda\ x.\ \lambda\ y.\ 1)\ (\mathbf{throw}\ u\ 2)\ (\mathbf{throw}\ u\ 3)).$$

There are three possible results for the evaluation of M depending on the evaluation strategy.

In this paper, we first extend the language to capture the non-deterministic feature of the catch/throw mechanism, and introduce its typing system. We next show the subject reduction property of the system.

2 A programming language with catch/throw

We first introduce a programming language based on λ -calculus. The language has the catch and throw mechanism.

2.1 Syntax

Constants and variables. We first assume the following disjoint sets of individual constants, individual variables and tag variables are given.

- C_i A set of individual constants c, d, \ldots
- V_i A countably infinite set of individual variables x,y,z,\ldots
- V_t A countably infinite set of tag variables u, v, w, \ldots

Tag variables are called tags.

Terms. The set of terms E are defined as follows:

Example 1.

$$\lambda x. \operatorname{case} x y. (\operatorname{inj}_2 y) z. (\operatorname{inj}_1 z)$$

 $\operatorname{catch} u ((\kappa v. \operatorname{proj}_1 < x, \operatorname{throw} v y >) u)$

We use M, N, \ldots to denote terms. The terms κV_t . E and EV_t are used to denote a tag-abstraction and a tag-instantiation, respectively, c.f. [4]. Free and bound occurrences of variables are defined in the standard manner. We regard a tag variable u as bound in **catch** u M and κu . M. We also define the alphaconvertibility in the standard manner where we admit renaming of bound tag variable as well as bound individual variables. Hereafter, we treat terms modulo this alpha-convertibility. A term M so represents an equivalence class of terms which are alpha-convertible to M. We denote the set of individual and tag variables occurring freely in M by FIV(M) and FTV(M), respectively.

Definition 1 (Substitution). Let M, N_1, \ldots, N_n be terms, and let x_1, \ldots, x_n be individual variables. We use $M[N_1/x_1, \ldots, N_n/x_n]$ to denote the term obtained from M by replacing all free occurrences of x_1, \ldots, x_n by N_1, \ldots, N_n , respectively. $M[v_1/u_1, \ldots, v_n/u_n]$ is defined similarly, where u_1, \ldots, u_n and v_1, \ldots, v_n are tag variables.

2.2 Operational semantics

Now we define an operational semantics of the language by a set of reduction rules on terms. The non-deterministic feature of the catch/throw mechanism is introduced by the following rule.

Definition 2 (\mapsto). A relation \mapsto on terms is defined as follows:

$$M[\mathbf{throw}\ u\ N/x] \mapsto \mathbf{throw}\ u\ N \qquad (x \in FIV(M),\ x \neq M)$$
.

Example 2.

```
 \begin{split} <\mathbf{inj_1} \ (\mathbf{throw} \ u \ M), \ \mathbf{throw} \ v \ N> & \underset{\mathbf{throw}}{\mapsto} \ \mathbf{throw} \ u \ M \\ <\mathbf{inj_1} \ (\mathbf{throw} \ u \ M), \ \mathbf{throw} \ v \ N> & \underset{\mathbf{throw}}{\mapsto} \ \mathbf{throw} \ v \ N \\ & \mathbf{throw} \ u \ M \not \mapsto \mathbf{throw} \ u \ M \\ & \mathbf{case} \ z \ x. (\mathbf{throw} \ u \ x) \ y. y \not \mapsto \mathbf{throw} \ u \ X \\ & \mathbf{catch} \ u \ (\mathbf{throw} \ u \ M) \not \mapsto \mathbf{throw} \ u \ M \\ & \mathbf{catch} \ v \ (\mathbf{throw} \ u \ (M \ v)) \not \mapsto \mathbf{throw} \ u \ (M \ v) \end{split}
```

The rest is defined by the following rules.

Definition 3 $(\stackrel{\smile}{\mapsto})$. A relation $\stackrel{\smile}{\mapsto}$ on terms is defined as follows:

Definition 4 (Reduction rules). We define a relation, denoted by \mapsto , by the union of \mapsto and \mapsto , that is,

$$M \mapsto N$$
 iff $M \mapsto N$ or $M \mapsto N$.

Definition 5 (\rightarrow). We define a relation, denoted by \rightarrow , as follows: $M \rightarrow N$ if and only if N is obtained from M by replacing an occurrence of M' in M by N' such that $M' \mapsto N'$. Let $\stackrel{*}{\rightarrow}$ be the transitive and reflexive closure of the relation \rightarrow .

Example 3. Let 1, 2 and 3 be distinct individual constants, and let M be as $M = \mathbf{catch}\ u\ ((\lambda x. \lambda y. 1)\ (\mathbf{throw}\ u\ 2)\ (\mathbf{throw}\ u\ 3)).$

$$M o \mathbf{catch} \ u \ ((\lambda \ y. \ 1) \ (\mathbf{throw} \ u \ 3)) o \mathbf{catch} \ u \ 1 o 1$$
 $M o \mathbf{catch} \ u \ (\mathbf{throw} \ u \ 2) o 2$
 $M o \mathbf{catch} \ u \ (\mathbf{throw} \ u \ 3) o 3$

3 A typing system

We now introduce a typing system for the programming language.

3.1 Syntax of typing judgements

Type expressions. Type expressions of our typing system consist of atomic types, conjunctions $(A \wedge B)$, disjunctions $(A \vee B)$, implications $(A \supset B)$ and exceptions $(A \triangleleft B)$. The last one is introduced to handle the catch/throw mechanism and represents another kind of disjunction (c.f. [4]).

Individual contexts. An individual context is a finite mapping which assigns a type expression to each individual variable in its domain. We use Γ, Γ', \ldots to denote individual contexts, and denote the domain of an individual context Γ by $Dom(\Gamma)$. Let A_1, \ldots, A_n be type expressions, and x_1, \ldots, x_n individual variables such that if $x_i = x_j$ then $A_i = A_j$ for any i and j. We use $\{x_1 : A_1, \ldots, x_n : A_n\}$ to denote an individual context whose domain is $\{x_1, \ldots, x_n\}$ and which assigns A_i to x_i for each i.

Tag contexts. An tag context is a finite mapping which assigns a pair of a type expression and a set of individual variables to each tag variable in its domain. We use Δ, Δ', \ldots to denote tag contexts. Let u_1, \ldots, u_n be tag variables. Let B_1, \ldots, B_n be type expressions, and let V_1, \ldots, V_n be sets of individual variables such that if $u_i = u_j$ then $B_i = B_j$ and $V_i = V_j$ for any i and j. We use $\{u_1: B_1^{V_1}, \ldots, u_n: B_n^{V_n}\}$ to denote a tag context whose domain is $\{u_1, \ldots, u_n\}$ and which assigns the pair (B_i, V_i) to u_i for each i. We denote the first and the second components of $\Delta(u)$ by $\Delta^t(u)$ and $\Delta^v(u)$, respectively. For example, $\Delta^t(u_i) = B_i$ and $\Delta^v(u_i) = V_i$ if $\Delta = \{u_1: B_1^{V_1}, \ldots, u_n: B_n^{V_n}\}$.

Definition 6 (Compatible contexts). Let Γ and Γ' be individual contexts. Γ is compatible with Γ' if and only if $\Gamma(x) = \Gamma'(x)$ for any individual variable $x \in Dom(\Gamma) \cap Dom(\Gamma')$. We denote it by $\Gamma \parallel \Gamma'$. Note that $\Gamma \cup \Gamma'$ is also an individual context if $\Gamma \parallel \Gamma'$. The compatibility of tag contexts is also defined as follows: Δ is compatible with Δ' if and only if $\Delta^t(u) = \Delta'^t(u)$ for any individual variable $u \in Dom(\Delta) \cap Dom(\Delta')$. We denote it by $\Delta \parallel \Delta'$. When Δ and Δ' are compatible, we define a new tag context $\Delta \sqcup \Delta'$ as follows.

$$(\varDelta \sqcup \varDelta')(u) = \begin{cases} (\varDelta^t(u), \ \varDelta^v(u) \cup \varDelta'^v(u)) & \text{if } u \in Dom(\varDelta) \cap Dom(\varDelta') \\ \varDelta(u) & \text{if } u \in Dom(\varDelta) \text{ and } u \not\in Dom(\varDelta') \\ \varDelta'(u) & \text{if } u \not\in Dom(\varDelta) \text{ and } u \in Dom(\varDelta') \end{cases}$$

Note that $Dom(\Delta \sqcup \Delta') = Dom(\Delta) \cup Dom(\Delta')$.

Definition 7. Let Δ be as $\Delta = \{u_1 : B_1^{V_1}, \ldots, u_n : B_n^{V_n}\}$, and let u and v be tag variables. If $\{u, v\} \subset Dom(\Delta)$ implies $\Delta^t(u) = \Delta^t(v)$, then we define a tag context $\Delta[v/u]$ as follows.

$$\Delta[v/u] = \{u_1[v/u]: B_1^{V_1}, \dots, u_n[v/u]: B_n^{V_n}\}.$$

We define $\Gamma[y/x]$ similarly for an individual context Γ and individual variables x and y.

Definition 8. Let V be a set of individual variables. We define a tag context $\Delta[V/\{x\}]$ as follows.

$$\begin{aligned} &Dom(\Delta[V/\{x\}]) = Dom(\Delta) \\ &\Delta[V/\{x\}]^t(u) = \Delta^t(u) \\ &\Delta[V/\{x\}]^v(u) = \begin{cases} (\Delta^v(u) - \{x\}) \cup V & \text{if } x \in \Delta^v(u) \\ \Delta^v(u) & \text{otherwise} \end{cases} \end{aligned}$$

Typing judgement. Let Γ and Δ be an individual context and a tag context, respectively, such that $\Delta^v(u) \subset Dom(\Gamma)$ for any $u \in Dom(\Delta)$. Let M be a term, and C a type expression. Typing judgements have the following form.

$$\Gamma \vdash M : C : \Delta$$

The intended meaning of a typing judgement $\{x_1:A_1,\ldots,x_m:A_m\} \vdash M:C$; $\{u_1:B_1^{V_1},\ldots,u_n:B_n^{V_n}\}$ is roughly that when we execute the program M supplying values of the types $A_1\ldots A_m$ for the corresponding free variables x_1,\ldots,x_m of M, it normally reduces to a value of the type C, otherwise the program throws a value of B_j with a tag u_j for some j $(1 \leq j \leq n)$, and the thrown value depends on only the individual variables which belong to V_j .

3.2 $L_{c/t}$

We denote the typing system by $L_{c/t}$, which can be considered as a natural-deduction-style reformulation of the logical system presented in [4]. We can see a more direct correspondence between proofs and programs in $L_{c/t}$.

Definition 9 (Typing rules). $L_{c/t}$ is defined by the following set of typing rules.

$$\frac{\Gamma \vdash M : A \;;\; \varDelta \sqcup \{u : A^V\}}{\Gamma \vdash \{x : A\} \vdash x : A \;;\; \varDelta} \;\; (var) \qquad \frac{\Gamma \vdash M : A \;;\; \varDelta \sqcup \{u : A^V\}}{\Gamma \vdash \mathbf{catch} \;u \;M : A \;;\; \varDelta} \;\; (catch)$$

$$\frac{\varGamma_1 \vdash M \mathbin{:} E \mathbin{;} \ \varDelta}{\varGamma_1 \cup \varGamma_2 \vdash \mathbf{throw} \ u \ M \mathbin{:} A \mathbin{;} \ \varDelta \sqcup \{u \mathbin{:} E^{Dom(\varGamma_1)}\}} \ (throw)$$

$$\frac{\varGamma \cup \{x : A\} \vdash M : B \; ; \; \varDelta}{\varGamma \vdash \lambda \; x. \; M : A \supset B \; ; \; \varDelta} \; \; (\supset \text{-I}) \quad (x \not \in \varDelta^v(u) \text{ for any } u \in Dom(\varDelta))$$

$$\frac{\Gamma_1 \vdash M : A \supset B \; ; \; \Delta_1 \quad \Gamma_2 \vdash N : A \; ; \; \Delta_2}{\Gamma_1 \cup \Gamma_2 \vdash M \; N : B \; ; \; \Delta_1 \sqcup \Delta_2} \; \; (\supset \text{-E})$$

$$\frac{\varGamma \vdash M : A \; ; \; \varDelta \sqcup \{u \colon E^V\}}{\varGamma \vdash \kappa \; u \ldotp M : A \triangleleft E \; ; \; \varDelta} \; \; (\triangleleft \text{-I}) \quad \frac{\varGamma_1 \vdash M : A \triangleleft E \; ; \; \varDelta}{\varGamma_1 \cup \varGamma_2 \vdash M \; u \colon A \; ; \; \varDelta \sqcup \{u \colon E^{Dom(\varGamma_1)}\}} \; \; (\triangleleft \text{-E})$$

$$\begin{split} \frac{\varGamma_1 \vdash M : A \,;\; \varDelta_1 \quad \varGamma_2 \vdash N : B \,;\; \varDelta_2}{\varGamma_1 \cup \varGamma_2 \vdash < M,\;\; N > : A \land B \,;\; \varDelta_1 \sqcup \varDelta_2} \;\; (\land \text{-I}) \\ \\ \frac{\varGamma \vdash M : A \land B \,;\; \varDelta}{\varGamma \vdash \mathbf{proj_1} \;M : A \,;\; \varDelta} \;\; (\land_1 \text{-E}) & \frac{\varGamma \vdash M : A \land B \,;\; \varDelta}{\varGamma \vdash \mathbf{proj_2} \;M : B \,;\; \varDelta} \;\; (\land_2 \text{-E}) \\ \\ \frac{\varGamma \vdash M : A \,;\; \varDelta}{\varGamma \vdash \mathbf{inj_1} \;M : A \lor B \,;\; \varDelta} \;\; (\lor_1 \text{-I}) & \frac{\varGamma \vdash M : B \,;\; \varDelta}{\varGamma \vdash \mathbf{inj_2} \;M : A \lor B \,;\; \varDelta} \;\; (\lor_2 \text{-I}) \end{split}$$

$$\frac{\varGamma_1 \vdash L : A \lor B \; ; \; \varDelta_1 \quad \varGamma_2 \cup \{x : A\} \vdash M : C \; ; \; \varDelta_2 \quad \varGamma_3 \cup \{y : B\} \vdash N : C \; ; \; \varDelta_3}{\varGamma_1 \cup \varGamma_2 \cup \varGamma_3 \vdash \mathbf{case} \; L \; x.M \; y.N : C \; ;} \quad (\lor\text{-E})}{\varDelta_1 \sqcup \varDelta_2[Dom(\varGamma_1)/\{x\}] \sqcup \varDelta_3[Dom(\varGamma_1)/\{y\}]}$$

The side condition for $(\supset -I)$ is necessary to keep the system constructive. Note that the following inference rule of [4] corresponds to $(\supset -I)$ of $L_{c/t}$.

$$\frac{\Gamma A \to B;}{\Gamma \to A \supset B;} \ (\to \supset)$$

A natural translation of this rule into $L_{c/t}$ would be as follows.

$$\frac{\Gamma \cup \{x : A\} \vdash M : B; \{\}}{\Gamma \vdash \lambda x. M : A \supset B; \{\}} \ (\supset \text{-I})'$$

As a logic, $(\supset I)'$ is equivalent to $(\supset I)$ of Definition 9, but is too restrictive with respect to the variation of proofs, i.e., typed programs. For example, the following typing judgement, which is derivable in $L_{c/t}$, would not be derivable if we replaced $(\supset I)$ by $(\supset I)'$.

$$\{\} \vdash \mathbf{catch} \ u \ (\lambda \ x. \ \mathbf{throw} \ u \ (\lambda \ y. \ y)) : A \supset A \ ; \ \{\}$$

Moreover, the language would not have a subject reduction property, because

$$\{\} \vdash \mathbf{catch} \ u \ ((\lambda z. \ \lambda x. \ z) \ (\mathbf{throw} \ u \ (\lambda y. \ y))) : A \supset A; \ \{\}$$

would be still derivable, but

catch
$$u((\lambda z. \lambda x. z) ($$
throw $u(\lambda y. y))) \rightarrow$ **catch** $u(\lambda x.$ **throw** $u(\lambda y. y)).$

This is the reason why we maintain the set of the relevant individual variables to each tag in tag contexts of typing judgements.

The following example of a derivation shows that the programming language does not have Church-Rosser property even if we consider only the well-typed terms. Let M be the term $\lambda x. \lambda f. \mathbf{catch} \ u \ ((\lambda y. x) \ (\mathbf{throw} \ u \ (f \ x)))$. The well-typed term M has two normal forms as follows.

$$\begin{split} M &\to \lambda \, x. \, \lambda \, f. \, \mathbf{catch} \, \, u \, \left(\mathbf{throw} \, \, u \, \left(f \, x \right) \right) \, \to \lambda \, x. \, \lambda \, f. \, f \, x \\ M &\to \lambda \, x. \, \lambda \, f. \, \mathbf{catch} \, u \, \, x \to \lambda \, x. \, \lambda \, f. \, x \end{split}$$

Example 4. Let Γ be as $\Gamma = \{x : A, f : A \supset A\}$.

$$\frac{\{y:B\} \vdash x:A;\; \{\}}{\{\} \vdash \lambda \, y. \, x:B \supset A;\; \{\}} \overset{(var)}{(\supset -\mathbf{I})} \frac{\overline{\Gamma \vdash f:A \supset A;\; \{\}}}{\Gamma \vdash \mathbf{throw} \, u \; (f \; x):B;\; \{u:A^{\{x,f\}}\}} \overset{(var)}{(\supset -\mathbf{E})} \frac{\overline{\Gamma \vdash f \; x:A;\; \{\}}}{\Gamma \vdash \mathbf{throw} \; u \; (f \; x):B;\; \{u:A^{\{x,f\}}\}} \overset{(throw)}{(\supset -\mathbf{E})} \frac{\Gamma \vdash (\lambda \, y. \, x) \; (\mathbf{throw} \; u \; (f \; x)):A;\; \{u:A^{\{x,f\}}\}}{\Gamma \vdash \mathbf{catch} \; u \; ((\lambda \, y. \, x) \; (\mathbf{throw} \; u \; (f \; x))):A;\; \{\}} \overset{(\supset -\mathbf{I})}{\{\} \vdash \lambda \, x. \, \lambda \, f. \, \mathbf{catch} \; u \; ((\lambda \, y. \, x) \; (\mathbf{throw} \; u \; (f \; x))):A \supset (A \supset A) \supset A;\; \{\}} \overset{(\supset -\mathbf{I})}{\{\} \vdash \lambda \; x. \, \lambda \, f. \, \mathbf{catch} \; u \; ((\lambda \, y. \, x) \; (\mathbf{throw} \; u \; (f \; x))):A \supset (A \supset A) \supset A;\; \{\}}$$

3.3 Basic properties of $L_{c/t}$

In this subsection, we presents a some basic properties of the system as a preparation for proving the subject reduction property of $L_{c/t}$.

Proposition 10. If $\Gamma \vdash M : C$; Δ is derivable, then $FIV(M) \subset Dom(\Gamma)$ and $FTV(M) \subset Dom(\Delta)$.

Proof. By induction on the derivation of $\Gamma \vdash M : C; \Delta$.

Definition 11. Let Δ and Δ' be tag contexts. We define a relation $\Delta \sqsubset \Delta'$ as follows. The relation $\Delta \sqsubset \Delta'$ holds if and only if

- $-\Delta \parallel \Delta'$,
- $Dom(\Delta) \subset Dom(\Delta')$, and
- $-\Delta^{v}(u) \subset \Delta'^{v}(u)$ for any $u \in Dom(\Delta)$.

Note that $\Delta \sqsubset (\Delta \sqcup \Delta')$ if $\Delta \parallel \Delta'$.

Definition 12. Let d be a natural number. We say a typing judgement is d-derivable if there exists a derivation of the judgement whose depth is less than or equal to d.

Proposition 13. Let d be a natural number, and let $\Gamma \vdash M:C$; Δ be a d-derivable typing judgement.

- 1. If $\Gamma \subset \Gamma'$ and $\Delta \sqsubset \Delta'$, then $\Gamma' \vdash M : C$; Δ' is also d-derivable.
- 2. If $\Gamma[y/x]$ is well defined, then $\Gamma[y/x] \vdash M[y/x] : C$; $\Delta[\{y\}/\{x\}]$ is also derivable.

3. If $\Delta[v/u]$ is well defined, then $\Gamma \vdash M[v/u] : C$; $\Delta[v/u]$ is also d-derivable.

Proof. By simultaneous inductions on d.

Proposition 14. Let x and u be as $x \notin FIV(M)$ and $u \notin FTV(M)$.

- 1. If $\Gamma \cup \{x : A\} \vdash M : C$; Δ is derivable, then $\Gamma \vdash M : C$; Δ is also derivable.
- 2. If $\Gamma \vdash M : C$; $\Delta \sqcup \{u : E^V\}$ is derivable, then $\Gamma \vdash M : C$; Δ is also derivable.

Proposition 15. Let M be term, and let u be a tag variable. If $\Gamma \vdash \mathbf{throw} \ u$ $M : C ; \Delta$ is derivable, then $\Gamma \vdash \mathbf{throw} \ u \ M : A ; \Delta$ is also derivable for any type A.

Proof. Since $\Gamma \vdash \mathbf{throw} \ u \ M : C ; \Delta$ is derivable, so is $\Gamma \vdash M : E ; \Delta'$ for some E and Δ' such that $\Delta = \Delta' \sqcup \{u : E^{Dom(\Gamma)}\}$. Therefore, we can derive $\Gamma \vdash \mathbf{throw} \ u \ M : A ; \Delta$ for any A by (throw).

Proposition 16 (Substitution). Let Γ_1 , Γ_2 , Δ_1 and Δ_2 be as $\Gamma_1 \parallel \Gamma_2$ and $\Delta_1 \parallel \Delta_2$. If $\Gamma_1 \vdash N : A$; Δ_1 and $\Gamma_2 \cup \{x : A\} \vdash M : C$; Δ_2 are derivable, then $\Gamma_1 \cup \Gamma_2 \vdash M[N/x] : C$; $\Delta_1 \sqcup \Delta_2[Dom(\Gamma_1)/\{x\}]$ is also derivable.

Proof. By induction on the depth of the derivation of $\Gamma_2 \cup \{x : A\} \vdash M : C$; Δ_2 . Suppose that $\Gamma_1 \vdash N : A$; Δ_1 and $\Gamma_2 \cup \{x : A\} \vdash M : C$; Δ_2 are derivable. By cases on the last rule used in the derivation of $\Gamma_2 \cup \{x : A\} \vdash M : C$; Δ_2 .

Case 1: The last rule is (var). That is, M=y for some individual variable y such that $\{y:C\} \subset \Gamma_2 \cup \{x:A\}$. If M=x, then we can derive $\Gamma_1 \cup \Gamma_2 \vdash M[N/x]:C$; $\Delta_1 \sqcup \Delta_2[Dom(\Gamma_1)/\{x\}]$ by applying Proposition 13 to the derivation of $\Gamma_1 \vdash N:A$; Δ_1 since M[N/x] = N and C = A in this case. If $M \neq x$, then we can derive it by (var) since M[N/x] = y and $\{y:C\} \subset \Gamma_2$ in this case.

Case 2: The last rule is (catch). In this case, $M = \operatorname{\mathbf{catch}} u M'$ and the following judgement is derivable for some u, V and M'.

$$\Gamma_2 \cup \{x : A\} \vdash M' : C \; ; \; \Delta_2 \sqcup \{u : C^V\}$$

We can assume that $u \notin Dom(\Delta_1)$ by Proposition 13. By the induction hypothesis, we have a derivation of

$$\Gamma_1 \cup \Gamma_2 \vdash M'[N/x] : C; \ \Delta_1 \sqcup (\Delta_2 \sqcup \{u : C^V\})[Dom(\Gamma_1)/\{x\}]. \tag{1}$$

Since $u \notin Dom(\Delta_1)$, we get $M[N/x] = \mathbf{catch} \ u \ (M'[N/x])$. By applying (catch) to (1), we get $\Gamma_1 \cup \Gamma_2 \vdash M[N/x] : C$; $\Delta_1 \sqcup \Delta_2[Dom(\Gamma_1)/\{x\}]$.

Case 3: The last rule is (throw). In this case, $M = \mathbf{throw} \ u \ M'$ and the following judgement is derivable for some $u, \ M', \ E, \ \Gamma_2'$ and Δ such that $\Gamma_2' \subset \Gamma_2 \cup \{x : A\}$ and $\Delta_2 = \Delta \sqcup \{u : E^{Dom(\Gamma_2') \cup \{x\}}\}.$

$$\Gamma_2' \vdash M' : E ; \Delta$$

Let Γ be as $\Gamma = \Gamma_2' - \{x : A\}$. Note that $\Gamma \subset \Gamma_2$ and $\Gamma_2' \subset \Gamma \cup \{x : A\}$. Therefore, by Proposition 13,

$$\Gamma \cup \{x : A\} \vdash M' : E ; \Delta.$$

By the induction hypothesis, we have a derivation of

$$\Gamma_1 \cup \Gamma \vdash M'[N/x] : E ; \Delta_1 \sqcup \Delta[Dom(\Gamma_1)/\{x\}].$$

Since $M[N/x] = \mathbf{throw} \ u \ (M'[N/x])$, by applying (throw),

$$\Gamma_1 \cup \Gamma \vdash M[N/x] : C ; \Delta_1 \sqcup \Delta[Dom(\Gamma_1)/\{x\}] \sqcup \{u : E^{Dom(\Gamma_1 \cup \Gamma)}\}.$$

Since $\Gamma \subset \Gamma_2$, by Proposition 13 again,

$$\Gamma_1 \cup \Gamma_2 \vdash M[N/x] : C ; \Delta_1 \sqcup \Delta[Dom(\Gamma_1)/\{x\}] \sqcup \{u : E^{Dom(\Gamma_1 \cup \Gamma)}\}.$$

Note that $\Delta[Dom(\Gamma_1)/\{x\}] \sqcup \{u : E^{Dom(\Gamma_1 \cup \Gamma)}\} = \Delta_2[Dom(\Gamma_1)/\{x\}]$ because $\Delta_2 = \Delta \sqcup \{u : E^{Dom(\Gamma_2') \cup \{x\}}\}$ and $x \notin Dom(\Gamma)$.

Case 4: The last rule is $(\supset I)$. In this case $M = \lambda y$. M', $C = C_1 \supset C_2$ and the following judgement is derivable for some y, C_1 , C_2 and M' such that $y \notin \Delta_2^v(u)$ for any $u \in Dom(\Delta_2)$.

$$\Gamma_2 \cup \{x : A\} \cup \{y : C_1\} \vdash M' : C_2; \Delta_2$$

We can assume that $y \not\in Dom(\Gamma_1)$ by Proposition 13, and get $M'[N/x] = \lambda y$. (M[N/x]). By the induction hypothesis, we have a derivation of

$$\Gamma_1 \cup \Gamma_2 \cup \{y : C_1\} \vdash M'[N/x] : C_2 ; \Delta_1 \sqcup \Delta_2[Dom(\Gamma_1)/\{x\}].$$
 (2)

Since $y \not\in \Delta_2^v(u)$ for any $u \in Dom(\Delta_2)$ and $y \not\in Dom(\Gamma_1)$, we get $y \not\in (\Delta_1 \sqcup \Delta_2[Dom(\Gamma_1)/\{x\}])^v(u)$ for any $u \in Dom(\Delta_1 \sqcup \Delta_2[Dom(\Gamma_1)/\{x\}])$. Therefore we can derive $\Gamma_1 \cup \Gamma_2 \vdash \lambda y$. $(M'[N/x]) : C_2 ; \Delta_1 \sqcup \Delta_2[Dom(\Gamma_1)/\{x\}]$ by applying $(\supset I)$ to (2).

Case 5: The last rule is one of others. Similar.

4 The subject reduction property of $oldsymbol{L}_{c/t}$

As mentioned in Section 3.2, the language does not have Church-Rosser property even if we consider only the well-typed terms. However, it has the subject reduction property, which compensates for this unpleasant feature. In this section, we show the subject reduction property of $L_{c/t}$.

Lemma 17. If $\Gamma \vdash M : C$; Δ is derivable and $M \mapsto \mathbf{throw} \ v \ N$, then $\Gamma \vdash \mathbf{throw} \ v \ N : C$; Δ is also derivable.

Proof. By induction on the depth of the derivation of $\Gamma \vdash M : C$; Δ . Suppose that $\Gamma \vdash M : C$; Δ is derivable and $M \mapsto \mathbf{throw} \ v \ N$. By Proposition 15, it is enough to show that $\Gamma \vdash \mathbf{throw} \ v \ N : C'$; Δ is derivable for some C'. By cases according to the last rules used in the derivation.

Case 1: The last rule is (var). This is impossible because $M \mapsto \mathbf{throw} \ v \ N$.

Case 2: The last rule is (catch). $M = \operatorname{\mathbf{catch}} u M'$ and the following judgement is derivable for some u, V and M'.

$$\Gamma \vdash M' : C \; ; \; \Delta \sqcup \{u : C^V\}$$
 (3)

We can assume that $u \notin FTV(\mathbf{throw} \ v \ N)$ by Proposition 13, and get $M' = \mathbf{throw} \ v \ N$ or $M' \underset{t}{\longmapsto} \mathbf{throw} \ v \ N$ from $M \underset{t}{\longmapsto} \mathbf{throw} \ v \ N$. Therefore, from (3) or the induction hypothesis on (3),

$$\Gamma \vdash \mathbf{throw} \ v \ N : C ; \ \Delta \sqcup \{u : C^V\}.$$

We get $\Gamma \vdash \mathbf{throw} \ v \ N : C \ ; \ \Delta$ by Proposition 14 since $u \not\in FTV(\mathbf{throw} \ v \ N)$.

Case 3: The last rule is (throw). In this case, $M = \mathbf{throw} \ u \ M'$ and the following judgement is derivable for some u, M', E, Γ' and Δ' such that $\Gamma' \subset \Gamma$ and $\Delta = \Delta' \sqcup \{u : E^{Dom(\Gamma')}\}$.

$$\Gamma' \vdash M' : E \; ; \; \Delta' \tag{4}$$

We get $M' = \mathbf{throw} \ v \ N \text{ or } M' \mapsto_{\mathsf{t}} \mathbf{throw} \ v \ N \text{ from } M \mapsto_{\mathsf{t}} \mathbf{throw} \ v \ N.$ Therefore, from (4) or the induction hypothesis on (4),

$$\Gamma' \vdash \mathbf{throw} \ v \ N : E ; \Delta'.$$

We get $\Gamma \vdash \mathbf{throw} \ v \ N : E ; \ \Delta \ \text{by Proposition 13 since} \ \Gamma' \subset \Gamma \ \text{and} \ \Delta' \sqsubseteq \Delta.$

Case 4: The last rule is $(\supset I)$. $M = \lambda x. M'$, $C = C_1 \supset C_2$ and the following judgement is derivable for some x, C_1, C_2 and M' such that $x \notin \Delta^v(u)$ for any $u \in Dom(\Delta)$.

$$\Gamma \cup \{x : C_1\} \vdash M' : C_2 ; \Delta \tag{5}$$

We can assume that $x \notin FIV(\mathbf{throw} \ v \ N)$ by Proposition 13, and get $M' = \mathbf{throw} \ v \ N$ or $M' \underset{t}{\mapsto} \mathbf{throw} \ v \ N$ from $M \underset{t}{\mapsto} \mathbf{throw} \ v \ N$. Therefore, from (5) or the induction hypothesis on (5),

$$\Gamma \cup \{x : C_1\} \vdash \mathbf{throw} \ v \ N : C_2 ; \Delta.$$

We get $\Gamma \vdash \mathbf{throw} \ v \ N : C_2; \ \Delta$ by Proposition 14 since $x \notin FIV(\mathbf{throw} \ v \ N)$.

Case 5: The last rule is one of others. Similar to Case 2 and Case 3.

Lemma 18. If $\Gamma \vdash M : C$; Δ is derivable and $M \underset{n}{\mapsto} N$, then $\Gamma \vdash N : C$; Δ is also derivable.

Proof. By induction on the depth of the derivation of $\Gamma \vdash M : C$; Δ . \Box Suppose that $\Gamma \vdash M : C$; Δ is derivable and $M \mapsto N$. By cases according to the form of M.

Case 1: $M = \mathbf{catch} \ u \ N \ and \ u \not\in FTV(N)$. In this case, $\Gamma \vdash N : C ; \Delta \sqcup \{u : C^V\}$ is derivable for some V. We get $\Gamma \vdash N : C ; \Delta$ by Proposition 14 since $u \not\in FTV(N)$.

Case 2: $M = \mathbf{catch}\ u\ (\mathbf{throw}\ u\ N)\ and\ u \not\in FTV(N)$. The following judgement is derivable for some $V,\ \Gamma'$ and Δ' such that $\Gamma' \subset \Gamma$ and $\Delta \sqcup \{u : C^V\} = \Delta' \sqcup \{u : C^{Dom(\Gamma')}\}$.

$$\Gamma' \vdash N : C ; \Delta'$$

Since $\Gamma' \subset \Gamma$ and $\Delta' \subset \Delta \sqcup \{u : C^V\}$, $\Gamma \vdash N : C$; $\Delta \sqcup \{u : C^V\}$ is derivable by Proposition 13. Therefore, $\Gamma \vdash N : C$; Δ is also derivable by Proposition 14 since $u \not\in FTV(N)$.

Case 3: $M = (\lambda x. M_1) M_2$ and $N = M_1[M_2/x]$ for some x, M_1 and M_2 . The following two judgements are derivable for some A and $x \notin \Delta^v(u)$ for any $u \in Dom(\Delta)$.

$$\Gamma \cup \{y : A\} \vdash M_1 : C \; ; \; \Delta \tag{6}$$

$$\Gamma \vdash M_2 : A ; \Delta$$
 (7)

We get $\Gamma \vdash M_1[M_2/x]:C$; $\Delta[Dom(\Gamma)/\{x\}]$ from (6) and (7) by Lemma 16, where $\Delta[Dom(\Gamma)/\{x\}] = \Delta$ since $x \notin \Delta^v(u)$ for any $u \in Dom(\Delta)$.

Case 4: $M=(\kappa\,u.\,M')\,v$ and N=M'[v/u] for some u,v and M'. The following judgement is derivable for some $E,\,\Gamma',\,\Delta'$ and V such that $\Gamma'\subset\Gamma$ and $\Delta=\Delta'\sqcup\{v:E^{Dom(\Gamma')}\}$.

$$\Gamma' \vdash M' : C ; \Delta' \sqcup \{u : E^V\}$$

Since $\Delta' \parallel \{v : E^{Dom(\Gamma')}\}$, $\Gamma' \vdash M'[v/u] : C$; $\Delta'[v/u] \cup \{v : E^V\}$ is derivable by Proposition 13. Since $\Gamma' \subset \Gamma$, by Proposition 13 again,

$$\Gamma \vdash M'[v/u] : C ; \Delta'[v/u] \cup \{v : E^V\}.$$

Since $V \subset Dom(\Gamma')$,

$$\Delta'[v/u] \sqcup \{v : E^V\} \sqsubset \Delta'[v/u] \sqcup \{v : E^{Dom(\Gamma')}\} \sqsubset \Delta' \sqcup \{v : E^{Dom(\Gamma')}\} = \Delta.$$

Therefore, $\Gamma \vdash M'[v/u] : C$; Δ is derivable by Proposition 13.

Case 5: $M = \mathbf{proj}_i < M_1, M_2 > and N = M_i \text{ for some } i \ (i = 1, 2).$ Similar.

Case 6: $M = \mathbf{case} \ (\mathbf{inj}_i M_0) \ x_1.M_1 \ x_2.M_2 \ and \ N = M_i[M_0/x_i] \ for \ some \ i \ (i = 1, 2).$ Similar.

Lemma 19. If $\Gamma \vdash M : C$; Δ is derivable and $M \mapsto N$, then $\Gamma \vdash N : C$; Δ is also derivable.

Proof. Straightforward from Lemma 17 and Lemma 18.

Theorem 20 (Subject reduction). If $\Gamma \vdash M : C$; Δ is derivable and $M \rightarrow N$, then $\Gamma \vdash N : C$; Δ is also derivable.

Proof. By induction on the depth of the derivation of $\Gamma \vdash M : C$; Δ . Suppose that $\Gamma \vdash M : C$; Δ is derivable and $M \to N$. If $M \mapsto N$, then trivial by Lemma 19. Therefore we can assume that $M \to N$ and $M \not\mapsto N$. By cases according to the last rules used in the derivation. A typical one is the case that the last rule is (throw). In this case, $M = \mathbf{throw} \ u \ M'$ and

$$\Gamma' \vdash M' : E ; \Delta'$$

is derivable for some u, M', E, Γ' and Δ' such that $\Gamma' \subset \Gamma$ and $\Delta = \Delta' \sqcup \{u : E^{Dom(\Gamma')}\}$. Since $M \to N$ and $M \not\mapsto N, M' \to N'$ and $N = \mathbf{throw} \ u \ N'$ for some N'. Therefore, $\Gamma' \vdash N' : E ; \Delta'$ is derivable by the induction hypothesis. We get $\Gamma \vdash \mathbf{throw} \ u \ N' : E ; \Delta$ by applying (throw). The proofs for other cases are just similar.

5 Concluding remarks

We have presented a programming language and its typing system which capture the non-deterministic feature of the catch/throw mechanism. We have shown that the system has subject reduction property, which compensates for the unpleasant feature of the non-determinism.

There remain some problems which should be considered. Two major ones are (1) semantics, especially realizability interpretations, of typing judgements, and (2) normalizability, especially strong normalizability, of well-typed terms. The subject reduction property is a good news to these problems, but both are still open.

References

- M. Felleisen, D. Friedman, E. Kohlbecker, and B. Duba, A syntactic theory of sequential control, Theoretical Computer Science 52(1987) 205-237.
- T. G. Griffin, A formulae-as-types notion of control, Conf. Rec. ACM Symp. on Principles of Programming Languages (1990) 47-58.
- 3. C. R. Murthy, An evaluation semantics for classical proofs, Proc. the 6th Annual IEEE Symp. on Logic in Computer Science (1991) 96-107.
- 4. H. Nakano, A Constructive Formalization of the Catch and Throw Mechanism, Proc. the 7th Annual IEEE Symp. on Logic in Computer Science (1992) 82-89.
- G. D. Plotkin, Call-by-name, call-by-value and the λ-calculus, Theoretical Computer Science 1(1975) 125-159.

This article was processed using the LATEX macro package with LLNCS style