The Non-deterministic Catch and Throw
Mechanism and Its Subject Reduction Property

Hiroshi Nakano

Department of Applied Mathematics and Informatics,
Ryukoku University, Seta, Otsu, 520-21, Japan
nakano@rins.ryukoku.ac. jp

Abstract. A simple programming language and its typing system is
introduced to capture the catch and throw mechanism with its non-
deterministic feature. The subject reduction property of the system,
which compensates for the unpleasant feature of the non-determinism,
is shown.

1 Introduction

The catch and throw mechanism is a programming facility for non-local exit
which plays an important role when programmers handle exceptional situations.
In a previous paper [4], the author showed that the catch/throw mechanism cor-
responds to a variant formulation of Genzen’s LJ following the Curry-Howard
isomorphism in the opposite direction, and gave a realizability interpretation to
the formal system by an abstract stack machine, in which the computational be-
havior of the mechanism was treated by a fixed evaluation strategy, and therefore
the result of evaluation was unique. However, generally, the catch/throw mech-
anism introduces a non-determinism to evaluation processes, that is, the result
of evaluation depends on the evaluation strategy. For example, let M be a term
defined by

M = catchu ((Az.Ay.1) (throw u 2) (throw u 3)).

There are three possible results for the evaluation of M depending on the eval-
uation strategy.

In this paper, we first extend the language to capture the non-deterministic
feature of the catch/throw mechanism, and introduce its typing system. We next
show the subject reduction property of the system.

2 A programming language with catch/throw

We first introduce a programming language based on A-calculus. The language
has the catch and throw mechanism.

2.1 Syntax

Constants and variables. We first assume the following disjoint sets of individual
constants, individual variables and tag variables are given.

C; A set of individual constants ¢, d,
Vi A countably infinite set of individual variables z,y, z,
Vi A countably infinite set of tag variables u,v,w,. ...

Tag variables are called tags.

Terms. The set of terms E are defined as follows:

E :: Ci | Vi | catchV; E | throwV; E
A\V,.,E | EE | kV,.E | EV,
<E, E> | proji E | projoFE
injt £ | injpE | caseE V;.,E V,.E .

Ezample 1.

Az.case z y.(injo y) 2.(injq 2)
catch u ((kv.projy <z, throw v y>)u)

We use M, N, ... to denote terms. The terms kV;. E and EV; are used to de-
note a tag-abstraction and a tag-instantiation, respectively, c.f. [4]. Free and
bound occurrences of variables are defined in the standard manner. We regard
a tag variable u as bound in catch u M and ku. M. We also define the alpha-
convertibility in the standard manner where we admit renaming of bound tag
variable as well as bound individual variables. Hereafter, we treat terms mod-
ulo this alpha-convertibility. A term M so represents an equivalence class of
terms which are alpha-convertible to /. We denote the set of individual and tag
variables occurring freely in M by FIV (M) and FTV (M), respectively.

Definition 1 (Substitution). Let M, Ny,..., N,, be terms, and let z1,...,z,
be individual variables. We use M[Ny/z1,...,N,/z,] to denote the term ob-
tained from M by replacing all free occurrences of x1,...,x, by Ny,..., Ny, re-
spectively. M[vy /uq, ..., v, /uy] is defined similarly, where uq, ..., u, and vy,. ..,
v, are tag variables.

2.2 Operational semantics

Now we define an operational semantics of the language by a set of reduction
rules on terms. The non-deterministic feature of the catch/throw mechanism is
introduced by the following rule.

Definition 2 (+»). A relation > on terms is defined as follows:

M[throw u N/z] =3 throw u N (x e FIV(M),z #M).

Ezample 2.

<injy (throw u M), throw v N> +» throw u M
<injj (throw u M), throw v N> » throw v N
throw u M > throw u M
case 2z r.(throw u z) y.y > throw u z
catch u (throw u M) /> throw u M
catch v (throw u (M v)) > throw u (M v)

The rest is defined by the following rules.

Definition 3 (). A relation — on terms is defined as follows:

catchu M — M (u g FTV(M))
catch u (throw u M) — M (uw g FTV(M))
(Az. M) N — M[N/x]
(ku.M)v v M[v/u
projy <M, N> M
projo <M, N> N
case (injy L) z.M y.N — M[L/z]
case (injg L) z.M y.N — N[L/y]

Definition 4 (Reduction rules). We define a relation, denoted by +, by the

union of +* and >, that is,

M— N iff MnT)NorM»;)N.

Definition 5 (—). We define a relation, denoted by —, as follows: M — N if
and only if N is obtained from M by replacing an occurrence of M’ in M by N’
such that M’ — N'. Let = be the transitive and reflexive closure of the relation

—.

Ezample 3. Let 1, 2 and 3 be distinct individual constants, and let M be as

M = catch u ((Az. Ay.1) (throw u 2) (throw u 3)).

M — catch v ((A\y.1) (throw u 3)) = catchu 1 — 1
M — catch u (throw u 2) — 2
M — catch u (throw u 3) — 3

3 A typing system

We now introduce a typing system for the programming language.

3.1 Syntax of typing judgements

Type expressions. Type expressions of our typing system consist of atomic types,
conjunctions (A A B), disjunctions (A V B), implications (A D B) and exceptions
(A< B). The last one is introduced to handle the catch/throw mechanism and
represents another kind of disjunction (c.f. [4]).

Individual contexts. An individual context is a finite mapping which assigns a
type expression to each individual variable in its domain. We use I, I, ... to
denote individual contexts, and denote the domain of an individual context I" by
Dom(I'). Let Ay, ..., A, be type expressions, and z1, . . ., Z,, individual variables
such that if z; = 2; then A; = A; for any ¢ and j. We use {21 :44,...,2,:A4,}
to denote an individual context whose domain is {z1,...,2z,} and which assigns
A; to x; for each 1.

Tag contexts. An tag contezt is a finite mapping which assigns a pair of a type
expression and a set of individual variables to each tag variable in its domain.
We use A, A, ... to denote tag contexts. Let uy,...,u, be tag variables. Let

By,..., B, be type expressions, and let V7, ..., V,, be sets of individual variables
such that if u; = u; then B; = B; and V; = V; for any ¢ and j. We use
{uy:BY", ... up:BY*} to denote a tag context whose domain is {u,...,u,}

and which assigns the pair (B;,V;) to u; for each i. We denote the first and
the second components of A(u) by Af(u) and AY(u), respectively. For example,
At(u;) = By and A?(u;) = Vi if A= {uy:By*,...,u,:B)/"}.

Definition 6 (Compatible contexts). Let I" and I be individual contexts.
I' is compatible with I if and only if I'(z) = I''(z) for any individual variable
x € Dom(I') N Dom(I""). We denote it by I" || I'". Note that I' U I is also an
individual context if I' || I'". The compatibility of tag contexts is also defined as
follows: A is compatible with A’ if and only if Af(u) = A'(u) for any individual
variable u € Dom(A) N Dom(A"). We denote it by A || A”. When A and A’ are
compatible, we define a new tag context AL A’ as follows.

(At(u), AY(u) U A"(u)) if uw € Dom(A) N Dom(A")
(AU A (u) =< Au) if u € Dom(A) and u Dom(A")
Al(u) if u Dom(A) and u € Dom/(A")

Note that Dom (A U A") = Dom(A) U Dom(A’).

Definition 7. Let A be as A = {u;:B*,...,u,:BY"}, and let u and v be
tag variables. If {u,v} C Dom(A) implies Af(u) = Af(v), then we define a tag
context Afv/u] as follows.

Alv/u] = {usv/u]: BY*, ... up[v/u]: BY"}.

We define I'[y/z] similarly for an individual context I" and individual variables
x and y.

Definition 8. Let V be a set of individual variables. We define a tag context
A[V/{z}] as follows.

Dom(A[V/{z}]) = Dom(A)
AV/{a}] (u) = A'(u)

AV/{z}]"(u) = {(AA:EEX) — UV ioftﬁefwil(w

Typing judgement. Let I" and A be an individual context and a tag context,
respectively, such that AY(u) € Dom(I") for any u € Dom(A). Let M be a
term, and C a type expression. Typing judgements have the following form.

Ir-M:C; A

The intended meaning of a typing judgement {z1:41,..., &y An} F M:C;
{ur: B, ... un: BY»} is roughly that when we execute the program M supply-
ing values of the types A ... A, for the corresponding free variables xy,..., 2y,
of M, it normally reduces to a value of the type C, otherwise the program throws
a value of B; with a tag u; for some j (1 < j < n), and the thrown value depends
on only the individual variables which belong to V.

3.2 Lc/t

We denote the typing system by L., which can be considered as a natural-
deduction-style reformulation of the logical system presented in [4]. We can see
a more direct correspondence between proofs and programs in L. .

Definition 9 (Typing rules). L./ is defined by the following set of typing
rules.

F'FM:A; Au{u:AV}
I'kcatchu M:A; A

(var) (catch)

I'u{z:A}Fz:A4; A

NFM:E;: A
I Uy Fthrow u M:A; AU {u: EPomI)}

(throw)

'u{z:A}F-M:B; A I
Ttz M A58, 4 O

(z & AY(u) for any u € Dom(A))

Fll_MADB,Al FQ"NA,AQ (DE)
IMUILFMN:B; A UA,)

F'-M:A; Au{u:EY} I IN-M:A<E; A
I'Fku M:A<E; A (<) DU FEMu:A; Au{u: EPomI)}

(«E)

Fll_MCA;Al FQ"NB,AQ
F1UF2|_<M, N>A/\B,A1|_|A2

(A-D)

I'FM:AANB; A
I'-projy M:A; A

I'FM:AANB; A
I'-projoM:B; A

(A1-E) (A2-E)

I'-M:A; A
I'injy M:AVB; A

I'-M:B; A
I'injo M:AVB; A

(Vi-I)

(Vo-I)

Fll_LA\/B,Al FQU{.’L’A}"MC, AQ FgU{yB}l_NC, Ag

nul,Ulytcase Lz.My.N:C; (V-E)
Ay U Ag[Dom(I) /{z}] U Az[Dom(I1) /{y}]

The side condition for (D-I) is necessary to keep the system constructive.
Note that the following inference rule of [4] corresponds to (D-I) of L.

I'A— B; (=5)
I >A>B;

A natural translation of this rule into L.;; would be as follows.

ru{z:A}rM:B; {} ,
e M:ASB; {} OV

As a logic, (D-1)" is equivalent to (D-I) of Definition 9, but is too restrictive
with respect to the variation of proofs, i.e., typed programs. For example, the
following typing judgement, which is derivable in L./, would not be derivable

if we replaced (D-I) by (O-I)".
{} F catchu (Az.throw u (A\y.y)):ADA; {}
Moreover, the language would not have a subject reduction property, because
{}Fecatchu (Az.\z.2) (throw u (Ay.y))):ADA; {}
would be still derivable, but
catchu ((Az. Az.z) (throw u (Ay.y))) = catch u (A z.throw u (Ay.y)).

This is the reason why we maintain the set of the relevant individual variables
to each tag in tag contexts of typing judgements.

The following example of a derivation shows that the programming language
does not have Church-Rosser property even if we consider only the well-typed
terms. Let M be the term Az. A f.catch u ((Ay.z) (throw u (f z))). The well-
typed term M has two normal forms as follows.

M — Az.) f.catch u (throw u (fz)) > Az A\ f. fz
M — Azx. A f.catchuz = Az.)\ f.x

Ezample. Let ' beas I' ={z: A, f: ADA}.

(var) (var)
(>-E)
(throw)

(>-E)

I'tf:ADA; {} m
Bl re:d; g V) TFfa:A; {)
{}FAy.2:BDA; {} (>0 I'+throwu (fz):B; {u: At/
'+ (\y.z)(throw u (fz)): A; {u: A=/}
I'kcatchu (Ay.z) (throw u (fz))): 4; {}
{z:A}F X f.catchu ((Ay.x) (throw u (fz))): (ADA)DA; {} (>1)
{}FAz. A f.catch u (\y.z) (throw u (fz))):AD(ADA)DA; {}

(catch)

(>-1)

3.3 Basic properties of L./

In this subsection, we presents a some basic properties of the system as a prepa-
ration for proving the subject reduction property of L/;.

Proposition10. If I' - M :C'; A is derivable, then FIV (M) C Dom(I") and
FTV (M) C Dom(A).

Proof. By induction on the derivation of I' - M : C'; A. O

Definition 11. Let A and A’ be tag contexts. We define a relation A C— A’ as
follows. The relation A C A’ holds if and only if

- A || A,)

— Dom(A) C Dom(4'), and

— AY(u) C A" (u) for any u € Dom(A).
Note that A= (Au A)if A || A"

Definition 12. Let d be a natural number. We say a typing judgement is d-
derivable if there exists a derivation of the judgement whose depth is less than
or equal to d.

Proposition 13. Let d be a natural number, and let ' = M :C; A be a d-
derivable typing judgement.

1. Ifrcrand Ac A', thenI" - M:C; A’ is also d-derivable.

2. If I'ly/x] is well defined, then I'ly/z] v My/z]:C; A[{y}/{z}] is also d-
derivable.

3. If Alv/u] is well defined, then I' - M[v/u]:C; Alv/u] is also d-derivable.

Proof. By simultaneous inductions on d. O

Proposition 14. Let z and u be as © ¢ FIV(M) and u ¢ FTV(M).

1. IfrU{z:A}F M:C; A is derivable, then I' = M :C'; A is also derivable.
2. If T+ M:C; Au{u:EV} is derivable, then I' = M : C'; A is also derivable.

Proof. Straightforward induction on the derivations. O

Proposition 15. Let M be term, and let u be a tag variable. If I' F throw u
M :C'; A is derivable, then I' F throw u M : A ; A is also derivable for any type
A.

Proof. Since I' - throw u M :C'; Ais derivable, sois I' - M : E; A’ for some E
and A’ such that A = A’U{u: EP°™)}, Therefore, we can derive I' - throw u
M:A; A for any A by (throw). |

Proposition 16 (Substitution). Let I, I, Ay and Ay be as I || Iz and
Ay || As. IfITEN:A; Ay and I U {x: A} F M :C; As are derivable, then
Uy M[N/z]:C; Ay U As[Dom(I7)/{x}] is also derivable.

Proof. By induction on the depth of the derivation of I U{z: A} - M :C; A,.
Suppose that It F N:A; Ay and I U{z: A} F M :C; A, are derivable. By
cases on the last rule used in the derivation of I3 U{z: A} F M :C; A,.

Case 1: The last rule is (var). That is, M = y for some individual variable
y such that {y:C} C IL U {z:A}. If M = z, then we can derive It U I F
MI[N/z]:C; A;UAs[Dom(I7)/{x}] by applying Proposition 13 to the derivation
of I N:A; Ay since M[N/z] = N and C = A in this case. If M # x, then
we can derive it by (var) since M[N/z] =y and {y:C} C I'; in this case.

Case 2: The last rule is (catch). In this case, M = catch u M' and the following
judgement is derivable for some u, V and M’'.

DU{z:AAFM:C; Ayu{u:C"}

We can assume that u € Dom/(A;) by Proposition 13. By the induction hypoth-
esis, we have a derivation of

DUy - M'[N/2]:C; Ay U (A U {u:CY})[Dom(I})/{z}]. (1)
Since u & Dom(A1), we get M[N/z] = catch u (M'[N/z]). By applying (catch)
to (1), we get Fl U FQ - M[N/m] C, Al (] AQ[Dom(Fl)/{m}]

Case 3: The last rule is (throw). In this case, M = throw u M’ and the fol-
lowing judgement is derivable for some u, M', E, I'; and A such that Iy C
IyU{z:A} and Ay = AU {u: EPon(I2)U{ehy

IFM:E; A
Let I'beas I' = I'j—{x: A}. Note that I" C Iy and I'y C I'U{z: A}. Therefore,

by Proposition 13,
u{z:A} - M'":E; A.

By the induction hypothesis, we have a derivation of

ur+- M'[N/z]:E; Ay U AlDom(Ih)/{z}].

Since M[N/z] = throw u (M'[N/z]), by applying (throw),

I U+ M[N/z]:C; Ay U A[Dom(I)/{x}] U {u: EPemICDY
Since I' C I, by Proposition 13 again,

[UL - MIN/a]:C'; Ay U A[Dom(Iy)/{a}] U {us BP0},

Note that A[Dom(I})/{z}] U {u: EP™ (VY — Ay[Dom(I)/{x}] because
Ay = AU {u: EPom(I2)U{=}) and 2 ¢ Dom(T).

Case 4: The last rule is (D-I). In this case M = Ay. M', C = C; D Cs and the
following judgement is derivable for some y, Cy, Co and M’ such that y & AY(u)
for any u € Dom(As).

FQU{.’L’:A}U{y:Cl}l_M/:CQ; AQ

We can assume that y ¢ Dom([1) by Proposition 13, and get M'[N/z] =
Ay. (M[N/z]). By the induction hypothesis, we have a derivation of

NuUuhyU{y:Ci} F M'[N/z]:Cqy; Ay U Ay[Dom(Iy)/{x}]. (2)

Since y ¢ AY(u) for any u € Dom(As) and y ¢ Dom/(I7), we get y & (A1 U
As[Dom(I1)/{z}])" (u) for any w € Dom(A; U As[Dom(I1)/{x}]). Therefore
we can derive [T UL F Ay. (M'[N/z]):Ca; AU As[Dom(I)/{z}] by applying
(2-I) to (2).

Case 5: The last rule is one of others. Similar. O

4 The subject reduction property of L./,

As mentioned in Section 3.2, the language does not have Church-Rosser property
even if we consider only the well-typed terms. However, it has the subject reduc-
tion property, which compensates for this unpleasant feature. In this section, we
show the subject reduction property of L/;.

Lemma17. If I' b M:C; A is derivable and M +»> throw v N, then I' -
throw v N:C'; A is also derivable.

Proof. By induction on the depth of the derivation of I"' = M :C'; A. Suppose
that I' = M :C'; A is derivable and M v throw v N. By Proposition 15, it is
enough to show that I' - throw v N :C’; A is derivable for some C’. By cases
according to the last rules used in the derivation.

Case 1: The last rule is (var). This is impossible because M +> throw v N.

Case 2: The last rule is (catch). M = catch u M’ and the following judgement
is derivable for some u, V and M'.

r-M:C; Au{u:C"} (3)

We can assume that u ¢ FTV (throw v N) by Proposition 13, and get M’ =
throw v N or M’ = throw v N from M +» throw v N. Therefore, from (3) or
the induction hypothesis on (3),

I'Fthrowo N:C; Au{u:C"}.
We get I' - throw v N :C'; A by Proposition 14 since u ¢ FTV (throw v N).
Case 3: The last rule is (throw). In this case, M = throw u M’ and the fol-
lowing judgement is derivable for some u, M’', E, I'" and A’ such that I" C I
and A= A"U {u:EDom(F')}.
I'-M:E; A (4)

We get M' = throw v N or M' 3 throw v N from M > throw v N.
Therefore, from (4) or the induction hypothesis on (4),

I'' -throwv N:E; A,
We get I' F throw v N: E; A by Proposition 13 since IV C I' and A’ C A.
Case 4: The last rule is (D-I). M = Axz.M', C = C; D5 and the following
judgement is derivable for some z, Cy, Cy and M' such that z ¢ AY(u) for any

u € Dom(A).
FU{Z’:Cl}}_MIZCQ;A (5)

We can assume that x ¢ FIV (throw v N) by Proposition 13, and get M' =
throw v N or M’ = throw v N from M > throw v N. Therefore, from (5) or
the induction hypothesis on (5),

I'u{z:Ci} F throw v N:C,; A.
We get I' - throw v N : Cy; A by Proposition 14 since ¢ FIV (throw v N).

Case 5: The last rule is one of others. Similar to Case 2 and Case 3. O

Lemmal8. If I' = M :C; A is derivable and M v N, then I' = N:C'; A is
also derivable.

Proof. By induction on the depth of the derivation of '+ M :C'; A. O
Suppose that I' = M : C'; A is derivable and M > N. By cases according to
the form of M.

Case 1: M = catchu N andu ¢ FTV(N). In this case, ' - N:C'; AU{u:C"V'}
is derivable for some V. We get I' - N:C'; A by Proposition 14 since u ¢
FTV(N).

Case 2: M = catch u (throw u N) and u ¢ FTV(N). The following judge-
ment is derivable for some V, I'" and A’ such that I" C I and AU {u:CV} =
AU {u: PomI

I'-N:C; A
Since I" ¢ I'and A" © AU{u:CV}, I' - N:C; AU {u:CV} is derivable
by Proposition 13. Therefore, I' F N:C'; A is also derivable by Proposition 14
since u ¢ FTV (N).

Case 3: M = (Axz.My) My and N = M,[Ms/z] for some x, My and M,. The
following two judgements are derivable for some A and z ¢ AY(u) for any u €
Dom(A).

Tru{y:A}F-M,:C; A (6)

We get I' b Mi[Ms/x]:C; A[Dom(I")/{x}] from (6) and (7) by Lemma 16,
where A[Dom(I")/{z}] = A since =z ¢ A?(u) for any u € Dom(A).

Case 4: M = (ku. M")v and N = M'[v/u] for some u, v and M'. The following
judgement is derivable for some E, I'', A’ and V such that I" € I" and A =
AU {v:EDom(F')}.

I'eM:C; AU{u:EV}

Since A’ || {v: EPom(IY "+ M'v/u]:C; A'lvju] U {v:EV} is derivable by
Proposition 13. Since I'" C I', by Proposition 13 again,

' Mu/u]:C; A'v/u]U{v:EV}.
Since V' C Dom(I"),
Aloful U{v:EVY € A'oju] U {v: EPo"UIY £ AU {v: BPomUIT)} = A
Therefore, I' = M'[v/u]: C'; A is derivable by Proposition 13.
Case 5: M = proj; <My, M>> and N = M; for some i (i =1,2). Similar.

Case 6: M = case (inj; My) x1.Mq x2.M> and N = M;[My/x;] for some i
(i =1,2). Similar. |

Lemmal9. If I' - M :C; A is derivable and M — N, then I' F N:C'; A is
also derivable.

Proof. Straightforward from Lemma 17 and Lemma 18. O

Theorem 20 (Subject reduction). If I' - M :C'; A is derivable and M —
N, then ' N:C'; A is also derivable.

Proof. By induction on the depth of the derivation of I' - M : C'; A. Suppose
that ' F M:C; A is derivable and M — N. If M +— N, then trivial by
Lemma 19. Therefore we can assume that M — N and M +» N. By cases
according to the last rules used in the derivation. A typical one is the case that
the last rule is (throw). In this case, M = throw « M’ and

I'tM:E; A

is derivable for some u, M', E, I and A’ such that I" C I" and A = A’ U
{u: EPo(I")} Since M — N and M v N, M’ — N’ and N = throw u N’ for
some N'. Therefore, I" - N': E; A’ is derivable by the induction hypothesis.
We get I' - throw u N': E; A by applying (throw). The proofs for other cases
are just similar.]

5 Concluding remarks

We have presented a programming language and its typing system which capture
the non-deterministic feature of the catch/throw mechanism. We have shown
that the system has subject reduction property, which compensates for the un-
pleasant feature of the non-determinism.

There remain some problems which should be considered. Two major ones
are (1) semantics, especially realizability interpretations, of typing judgements,
and (2) normalizability, especially strong normalizability, of well-typed terms.
The subject reduction property is a good news to these problems, but both are
still open.

References

1. M. Felleisen, D. Friedman, E. Kohlbecker, and B. Duba, A syntactic theory of
sequential control, Theoretical Computer Science 52(1987) 205-237.

2. T. G. Griffin, A formulae-as-types notion of control, Conf. Rec. ACM Symp. on
Principles of Programming Languages (1990) 47-58.

3. C. R. Murthy, An evaluation semantics for classical proofs, Proc. the 6th Annual
IEEE Symp. on Logic in Computer Science (1991) 96-107.

4. H. Nakano, A Constructive Formalization of the Catch and Throw Mechanism, Proc.
the 7th Annual IEEE Symp. on Logic in Computer Science (1992) 82-89.

5. G.D. Plotkin, Call-by-name, call-by-value and the A-calculus, Theoretical Computer
Science 1(1975) 125-159.

This article was processed using the IATEX macro package with LLNCS style

