
Fixed-point logic with the approximation
modality and its Kripke completeness

Hiroshi Nakano

Ryukoku University, Japan
nakano@math.ryukoku.ac.jp

Abstract. We present two modal typing systems with the approxima-
tion modality, which has been proposed by the author to capture self-
references involved in computer programs and their specifications. The
systems are based on the simple and the F-semantics of types, respec-
tively, and correspond to the same modal logic, which is considered the
intuitionistic version of the logic of provability. We also show Kripke
completeness of the modal logic and its decidability, which implies the
decidability of type inhabitance in the typing systems.

1 Introduction

Although recursion, or self-reference, plays an indispensable role in both pro-
grams and their specifications, it also introduces serious difficulties into their
formal treatment. Consider, for example, objects which represent integers and
have an accessor method to obtain its value, and methods for doing subtraction
and finding the greatest common divisor provided another integer object. In
Java, the interface, or the coarse specification, of such objects could be written
as:

interface Int {
int getValue();
Int sub(Int peer);
Int getGCD(Int peer);

}

and we could implement it as the following class Int1, which includes some
excessive occurrences of “this” for readability.

class Int1 implements Int {
private int value;
Int1(int v) { value = v; } // constructor
public int getValue() { return value; } // accessor
public Int sub(Int peer) { // subtraction method

return new Int1(this.getValue() - peer.getValue());
}
public Int getGCD(Int peer) { // gcd method

if (this.getValue() == peer.getValue())

return this;
else if (this.getValue() > peer.getValue())

return this.sub(peer).getGCD(peer);
else

return peer.getGCD(this);
}

}

We could also consider another implementation, say Int2, which employs the
following definition of getGCD method:

public Int getGCD(Int peer) {
if (this.getValue() == peer.getValue())

return this;
else if (this.getValue() < peer.getValue())

return peer.sub(this).getGCD(this);
else

return peer.getGCD(this);
}

These two class are quite symmetrical to each other, and either one works fine
as long as we only use objects of the same kind. However, these two kinds of
objects are not interchangeable; if we mix objects of the two classes, they run
into an infinite loop whenever their getGCD methods are invoked with objects
of the other class. If the specification being supposedly satisfied by the objects
of these two classes were identical, we would be able to mix the objects without
problems. So we realize that it is inevitable to give different, maybe slightly
different, specifications to these two implementations of Int in order to obtain
modularity of programs with respect to their termination, or convergence.

The approximation modality has been proposed by the author in order to
incorporate general self-reference into formal specification of programs and their
implementations without such loss of modularity, with which we can construct
a wider range of programs, such as fixed point combinators and objects with
so-called binary methods in object-oriented programming, through the proof-as-
programs paradigm. We refer the reader to [1] for the motivation of the modality
and examples of applications (see also [2] for proofs).

The original typing system, however, would be now considered as a specific
example of a class of more general systems. In this paper, we present two basic
typing systems with the modality, of which the original system can be considered
an extension. One is based on the simple semantics of types, and the other is
its variant based on the F-semantics of types (cf. [3, 4]). We show that both the
systems have desirable convergence properties and correspond to the same modal
logic, which is Kripke complete with respect to intuitionistic, transitive and
converse wellfounded frames. The completeness theorem implies its decidability,
and also the decidability of type inhabitance in the typing systems. We also show
that the modal logic is a conservative extension of the intuitionistic version of
the logic of provability (cf. [5]).

2 The typing systems

We introduce two basic modal typing systems denoted by S-λ•µ and F-λ•µ,
respectively. As a preparation for defining the syntax of type expressions, we
first give one of pseudo type expressions PTExp, which are obtained by adding
a unary type constructor • to those of λµ, namely the simply typed λ-calculus
extended with recursive types (cf. [6, 7]). Let TVar be a countably infinite set
of type variable symbols X, Y , Z, The syntax of PTExp is given by:

PTExp ::= TVar (type variables)
| PTExp→PTExp (function types)
| •PTExp (approximative types)
| µTVar. PTExp (recursive types)

Type constants are omitted for simplicity. We assume that → associates to the
right as usual, and each (pseudo) type constructor associates according to the
following priority: (highest) •,→, µX. (lowest). For example, •µX.•X→Y→Z is
the same as •(µX.((•X)→ (Y → Z))). We use > as an abbreviation for µX.•X
and use •nA to denote a (pseudo) type expression • . . . •︸ ︷︷ ︸

n times

A, where n ≥ 0.

Definition 1. A type expression A is an F->-variant if and only if A = •m0µX1.
•m1µX2.•m2 . . . µXn.•mnXi for some n, m0, m1, m2, . . ., mn, X1, X2, . . ., Xn

and i such that 1 ≤ i ≤ n and mi+mi+1+mi+2+. . .+mn ≥ 1. A type expression
A is an S->-variant if and only if A is an F->-variant, where A is defined as
follows:

X = X, A→B = B, µX.A = µX.A.

An F->-variant is also an S->-variant, and by definition it is decidable whether
a type expression is an S(F)->-variant or not. S(F)->-variants correspond to the
universe into which λ-terms are interpretated. Hence, every λ-term should have
these types in S(F)-λ•µ, respectively.

Definition 2. We say that a pseudo type expression A is S-proper (respectively
F-proper) in X if and only if X occurs freely only (a) in scopes of the •-operator
in A, or (b) in a subexpression B → C of A with C being an S->-variant (F->-
variant).1

For example, •X, •(X → Y), µY.•(X → Y), and X →> are S(F)-proper in X,
and neither X, X → Y nor µY.µZ.X → Y is S(F)-proper in X.

Definition 3. A type expression of S-λ•µ (respectively F-λ•µ) is a pseudo type
expression such that A is S-proper (F-proper) in X for any of its subexpressions
in the form of µX.A. We denote the set of type expressions by TExp.

1 The condition (b) is included so that the equivalence relation ' on type expressions
(cf. Definition 4) preserves properness.

For example, X, X→Y , µX.•X→Y , µX.X→> and µX.•µY.X→Z are type
expressions, and neither µX.X → Y nor µX.µY.X → Y is a type expression.
We use A,B, C, D, . . . to denote type expressions of λ•µ’s, and denote the set
of type variables occurring freely in A by FTV (A) regarding a type variable X
as bound in µX.A. We also regard α-convertible type expressions as identical,
and use A[B1/X1, . . . , Bn/Xn] to denote the type expression obtained from A
by substituting B1, . . . , Bn for each free occurrence of X1, . . . , Xn, respectively.

Definition 4. The equivalence relation ' on type expressions is defined as the
smallest binary relation that satisfies:

('-reflex) A ' A.
('-symm) If A ' B, then B ' A.
('-trans) If A ' B and B ' C, then A ' C.

('-•) If A ' B, then •A ' •B.
('-→) If A ' C and B ' D, then A→B ' C →D.
('-fix) µX.A ' A[µX.A/X].

('-uniq) If A ' C[A/X] and C is S(F)-proper in X, then A ' µX.C.

All the condition above are common to S-λ•µ and F-λ•µ, and the following ones
are respectively satisfied:

S-λ•µ: ('-→>) A→> ' >.
F-λ•µ: ('-→>) A→> ' B →>.

Intuitively, two type expressions are equivalent if their (possibly infinite) type
expression obtained by unfolding recursive types occurring in them indefinitely
are identical modulo the rule ('-→>). This equality on type expressions is
decidable. One can also observe that a type expression A is an S(F)->-variant if
and only if A ' > in S(F)-λ•µ, respectively.

We now define a subtyping relation on type expressions, which is induced by
the •-modality, by a set of the subtyping rules (cf. [8]). A subtyping assumption
is a finite set of pairs of type variables such that any type variable appears at
most once in the set. We write {X1 ¹ Y1, X2 ¹ Y2, . . . , Xn ¹ Yn} to denote
the subtyping assumption { <Xi, Yi> | i = 1, 2, . . . , n }, and use γ, γ′, γ1,
γ2, . . . to denote subtyping assumptions, and FTV (γ) to denote the set of type
variables occurring in γ.

Definition 5 (¹). The derivability of a subtyping judgment γ ` A ¹ B is
defined by the following subtyping rules:

γ ∪ {X ¹ Y } ` X ¹ Y
(¹-assump)

γ ` A ¹ >
(¹->)

γ ` A ¹ •A
(¹-approx)

γ ` A ¹ A′
(¹-reflex) (A ' A′)

γ1 ` A ¹ B γ2 ` B ¹ C

γ1 ∪ γ2 ` A ¹ C
(¹-trans)

γ ` A ¹ B

γ ` •A ¹ •B
(¹-•)

γ1 ` A′ ¹ A γ2 ` B ¹ B′

γ1 ∪ γ2 ` A→B ¹ A′→B′ (¹-→)

γ ∪ {X ¹ Y } ` A ¹ B

γ ` µX.A ¹ µY.B
(¹-µ)

(
X /∈ FTV (γ) ∪ FTV (B), Y /∈ FTV (γ) ∪
FTV (A), and A and B are S(F)-proper
in X and Y , respectively

)

Note that γ ∪ {X ¹ Y } and γ1 ∪ γ2 in the rules above must be (valid) subtyping
assumptions, i.e., any type variable must not have more than one occurrence in
them. All the rules above are common to S-λ•µ and F-λ•µ, and they respectively
have another rule called (→¹-→•) as follows:

S-λ•µ :
γ ` •(A→B) ¹ •A→•B

(¹-→•)

F-λ•µ :
γ ` A→B ¹ •A→•B

(¹-→•)

The binary relation ¹ on type expressions is defined as: A ¹ B if and only if
{} ` A ¹ B is derivable. It should be noted that if A ¹ B in F-λ•µ, then it is
also the case in S-λ•µ.

We now define the typing rules for S-λ•µ and F-λ•µ. A typing context is a
finite mapping that assigns a type expression to each individual variable of its
domain. We use Γ , Γ ′, . . . to denote typing contexts, and {x1 : A1, . . . , xm : Am}
to denote the typing context that assigns Ai to xi for every i. We write Γ ′ ¹ Γ if
and only if Dom(Γ ′(x)) = Dom(Γ (x)) and Γ ′(x) ¹ Γ (x) for every x ∈ Dom(Γ).

Definition 6. The typing systems S-λ•µ and F-λ•µ are defined by the following
derivation rules:

Γ ∪ {x : A} ` x : A
(var)

Γ ` M : A

•Γ ` M : •A
(nec)

Γ ` M : >
(>)

Γ ` M : A Γ ′(x) ¹ Γ (x) A ¹ A′

Γ ′ ` M : A′
(¹)

Γ ∪ {x : A} ` M : B

Γ ` λx. M : A→B
(→ I)

Γ1 ` M : •n(A→B) Γ2 ` N : •nA

Γ1 ∪Γ2 ` MN : •nB
(→E)

where Dom(•Γ) = Dom(Γ) and (•Γ)(x) = •Γ (x) for every x ∈ Dom(Γ). Note
that since S-λ•µ has the subtyping rule •(A→ B) ¹ •A→ •B, the (→E)-rule
for S-λ•µ can be simplified to the following usual form:

Γ1 ` M : A→B Γ2 ` N : A

Γ1 ∪ Γ2 ` MN : B
(→E)

Since A ¹ B in F-λ•µ implies the same in S-λ•µ, one can observe the following.

Proposition 1. If Γ ` M : A is derivable in F-λ•µ, then so is it in S-λ•µ.

The most interesting thing about S(F)-λ•µ is that one can derive ` Y : (•A
→ A) → A for any A, where Y = λf. (λx. f (xx)) (λx. f (xx)) (cf. [1]). The
typing systems S-λ•µ and F-λ•µ also enjoy some basic properties such as subject
reduction property.

Proposition 2. (1) If Γ ` M : A is derivable, then FV (M)⊂Dom(Γ).

(2) If Γ ∪ {x : A} ` M : B and Γ ` N : A are derivable, then so is Γ `
M [N/x] : B .

(3) If Γ ` M : A is derivable and M →
β

M ′, then Γ ` M ′ : A is derivable.

Proof. Straightforward induction on the derivations. In the proof of (3), we apply
the following property of ¹ to the case that the derivation ends with (→E): if
A→B ¹ •n(C →D) and D /' >, then •lB ¹ C and D ¹ •lA for some l. ut

3 Semantics

In this section, we show revised results presented in Sections 4 and 5 of [1].
We give two kinds of realizability interpretations, the simple semantics and the
F-semantics, over certain Kripke-frames to S-λ•µ and F-λ•µ, respectively, and
show soundness of each typing system with respect to the corresponding interpre-
tation. We also show that the new systems preserve the convergence properties
of well-typed λ-terms presented in [1].

We now consider the following class of Kripke-frames.

Definition 7. A transitive and converse wellfounded frame is a pair <W, →>,
which consists of a set W of possible worlds and an accessibility relation → on
W such that:

(1) The relation → is transitive.
(2) The relation → is converse wellfounded, i.e., there is no infinite sequence

such that p0 → p1 → p2 → p3 →

Let <V, ·, [[]]> be a λ-model of untyped λ-calculus. The meaning of a λ-term
M is denoted by [[M]]ρ, where ρ is an individual environment that assigns an
element of V to each individual variable. Each type expression is interpreted as
a mapping I from W to the power set P(V) of V such that:

p → q implies I(p) ⊂ I(q)

A mapping that assigns such a monotone mapping to each type variable is called
a type environment.

Definition 8 (Semantics of types). Let <W, →> be a transitive and con-
verse wellfounded frame, and ξ a type environment. We define a mapping IS(A)ξ

from W to P(V) for each type expression A by extending ξ as follows, where we
prefer to write IS(A)ξ

p rather than IS(A)ξ(p).

IS(X)ξ
p = ξ(X)p

IS(•A)ξ
p = { u | u ∈ IS(A)ξ

q for every q ← p }

IS(A→B)ξ
p =

{
u

∣∣∣∣
If B is not an S->-variant, then u · v ∈ IS(B)ξ

q

for every v ∈ IS(A)ξ
q whenever q = p or q ← p.

}

IS(µX.A)ξ
p = IS(A[µX.A/X])ξ

p

IS is called the simple semantics of types. We similarly define IF (A)ξ, the F-
semantics of types, where the only difference is the definition of IF (A → B)ξ,
which is defined as:

IF (A→B)ξ
p =





u

∣∣∣∣∣∣∣∣

1. If B is not an F->-variant, then u · v ∈ IF (B)ξ
q

for every v ∈ IF (A)ξ
q whenever q = p or q ← p,

and
2. u = [[λx. M]]ρ for some x, ρ and M .





In the squeal, we prefer to write I(A)ξ, or I(A), rather than IS(A)ξ or IF (A)ξ

when it would cause no confusion in context. Note that the I(A)ξ
p has been

defined by induction on the lexicographic ordering of <p, r(A)>, where the
non-negative integer r(A) is defined as:

r(X) = r(•A) = 0

r(A→B) =
{

0 (B is an S(F)->-variant)
max(r(A), r(B)) + 1 (otherwise)

r(µX.A) = r(A) + 1

I(µX.A)ξ
p is well defined since r(A[B/X]) < r(µX.A) for any B whenever A is

S(F)-proper in X. We can easily verify that p → q implies I(A)ξ
p ⊂ I(A)ξ

q.

Proposition 3. The equivalence relation ' and the subtyping relation ¹ on
type expressions well respect these semantics. That is:

(1) If A ' B, then I(A)ξ
p = I(B)ξ

p for every p ∈ W.
(2) If A ¹ B, then I(A)ξ

p ⊂ I(B)ξ
p for every p ∈ W.

From these results, we can also show the soundness of S-λ•µ and F-λ•µ with
respect to the semantics of types IS and IF , respectively.

Theorem 1 (Soundness). If {x1 : A1, . . . , xn : An} ` M : B is derivable,
then [[M]]ρ ∈ I(B)ξ

p for every p, ξ and ρ whenever ρ(xi) ∈ I(Ai)ξ
p for every i

(i = 1, 2, . . . , n).

Proof. By induction on the derivation and by cases of the last rule used in the
derivation. Most cases are straightforward. Use Proposition 3 for the case of (¹).
Prove it by induction on p in the case of (→I). ut

One can observe that F-λ•µ is also sound with respect to the simple semantics
IS by Proposition 1. If the transitive and converse wellfounded frame <W, →>
also satisfies the following extra condition:

if r → p, then r ∗→ q → p for some q such that q → s implies p ∗→ s
for any s, where ∗→ denotes the reflexive (and transitive) closure
of →,

then the rule below is also sound with respect to IS (respectively IF), when
added to S-λ•µ (F-λ•µ).

γ ` •A→•B ¹ •(A→B)
(¹-•→)

Similarly, if for every p ∈ W there exists some q ∈ W such that q → p, then

•Γ ` M : •A
Γ ` M : A

(•)

is sound. For example, the set of non-negative integers, or limit ordinals, and
the “greater than” relation >, where a smaller number is accessible from a
larger one, constitute a frame satisfying the two conditions above. We call the
extended systems with these two rules S-λ•µ+ and F-λ•µ+, respectively, where
the (¹-•→) rule makes (nec) redundant. It should be noted that the two rules
provide the converses of (¹-→•) and (nec), respectively. The original system
given in [1] is equivalent to F-λ•µ+. Although the base systems S-λ•µ and F-λ•µ
are somewhat weaker than that, all the examples of programs presented in the
paper still work in them.

Theorem 1 assures us that the modularity of programs is preserved even if
we regard type expressions, or specifications, as asserting the convergence of
programs. For example, if a type B comprises of certain canonical values, and
we have a program M of a type A→B, then we can expect that M terminates
and returns such a canonical value when we provide a value of A. By a discussion
on soundness with respect to an interpretation over the term model of untyped
λ-calculus, we can obtain such convergence properties of well-typed λ-terms.
The corresponding results for the original system F-λ•µ+ was first presented in
Section 5 of [1].

Definition 9. A type expression A is tail finite if and only if A ' •m1(B1 →
•m2(B2 → •m3(B3 → . . . → •mn(Bn → X) . . .))) for some n, m0, m1, m2, . . .,
mn, B1, B2, . . ., Bn and X.

A type expression is tail finite if and only if it is not an S->-variant.

Definition 10. Let A be a type expression. Two sets ETV +(A) and ETV −(A)
of type variables are defined as follows:

ETV +(X) = {X}, ETV −(X) = {},
ETV ±(•A) = ETV ±(A),

ETV ±(A→B) =
{{} (B is an S(F)->-variant)

ETV ∓(A) ∪ ETV ±(B) (otherwise)

ETV ±(µX.A) =
{

(ETV ±(A) ∪ ETV ∓(A))− {X} (X ∈ ETV −(A))
ETV ±(A)− {X} (otherwise)

It should be noted that the set ETV +(A) (ETV −(A)) consists of the type
variables that have free positive (negative) occurrences in A, where we ignore any
subexpression B → C of A whenever C is an S(F)->-variant. If X ∈ ETV ±(A)
in S-λ•µ, then so is in F-λ•µ.

Definition 11. A type expression A is positively (negatively) finite if and only
if C is tail finite whenever A ' B[C/X] for some B and X such that X ∈
ETV +(B) (X ∈ ETV −(B)) and X /∈ ETV −(B) (X /∈ ETV +(B)).

Every positively finite type expression is tail finite. If a type expression of F-λ•µ
is tail (positively, or negatively) finite, then so is as a type expression of S-λ•µ.

Theorem 2 (Convergence). Let Γ ` M : A be derivable in S-λ•µ, F-λ•µ,
S-λ•µ+ or F-λ•µ+.

(1) If A is tail finite, then M is head normalizable.
(2) If A is positively finite, and Γ (x) is negatively finite for every x ∈

Dom(Γ), then the Böhm tree of M has no occurrence of ⊥, i.e., a λ-
term not being head normalizable.

Proof. It suffices to prove the case of S-λ•µ+. See Appendix. ut

Moreover, if the typing judgement is derivable in F-λ•µ or F-λ•µ+ for some A
not being an F->-variant, then M is weakly head normalizable, i.e., β-reduces
to the form λx. N or x N1 N2 . . . Nn (n ≥ 0) (cf. [1]).

4 The modal logic behind S-λ•µ and F-λ•µ

In this section, we consider S-λ•µ and F-λ•µ as modal logics by ignoring left
hand sides of “:” from typing judgments, and show that they precisely correspond
to the same modal logic.

Definition 12 (Formal system L•µ). We define a modal logic considering
type expressions as logical formulae, where the equivalence relation 'L on for-
mulae is defined as the smallest binary relation that satisfies the conditions listed

in Definition 4 except ('-uniq) and ('-→>). Let L•µ be the formal system de-
fined by the following inference rules, where Γ denotes a finite set of formulae.

Γ ∪ {A} ` A
(assump)

Γ ` A

•Γ ` •A
(nec)

Γ ` A

Γ ` A′
('L) (A 'L A′)

Γ ` •(A→B)→•A→•B
(K)

Γ ` A→•A
(approx)

Γ ∪ {A} ` B

Γ ` A→B
(→ I)

Γ1 ` A→B Γ2 ` A

Γ1 ∪ Γ2 ` B
(→E)

Proposition 4. If {A1, . . . , An} ` B is derivable in L•µ, then {x1 : A1, . . . ,
xn : An} ` M : B is derivable in F-λ•µ for some λ-term M and distinct individ-
ual variables x1, . . ., xn, such that FV (M)⊂{x1, . . . , xn}.
Proof. Straightforward. ut
Definition 13. A •µ-frame is a triple <W, →, R>, which consists of a set W
of possible worlds and two accessibility relations → and R on W such that:

(1) <W, R> is a transitive and converse wellfounded frame.
(2) → is a transitive relation on W.
(3) p → q implies p R q.

It should be noted that → is also converse wellfounded by the condition (3); and
hence <W, → > is also a transitive and converse wellfounded frame.

Definition 14 (Semantics of L•µ). Let <W, →, R> be a •µ-frame. A map-
ping I from W to {t, f } is hereditary if and only if:

if p R q, then I(p) = t implies I(q) = t.

A mapping ξ that assigns a hereditary mapping to each propositional variable,
i.e., type variable, is called a valuation. We define a hereditary mapping IL(A)ξ

from W to {t, f } for each formula A by extending ξ as follows, where we write
|=ξ

pA to denote IL(A)ξ(p) = t.

|=ξ
pX iff ξ(X)p = t

|=ξ
pA→B iff |=ξ

qA implies |=ξ
qB for every q such that q = p or p R q

|=ξ
p•A iff |=ξ

qA for every q such that p → q or p R r → q for some r

|=ξ
pµX.A iff |=ξ

pA[µX.A/X]

Note that |=ξ
pA is again defined by induction on the lexicographic ordering of

<p, r(A)>. We write Γ |=ξ
p A if and only if |=ξ

pA whenever |=ξ
pB for every B ∈ Γ .

By a discussion similar to Theorem 1, one observes soundness of S-λ•µ as a logic
with respect to this semantics of formulae.

Proposition 5. If A ¹ B in S-λ•µ, then {A} |=ξ
p B.

Proposition 6. Let <W, →, R> be a •µ-frame, and ξ a valuation. If {x1 :
A1, . . . , xn : An} ` M : B is derivable in S-λ•µ, then {A1, . . . , An} |=ξ

p B for
every p∈W.

The main results of the present paper can be summarized as the following the-
orem.

Theorem 3. The following four conditions are equivalent.

(1) {A1, , . . . , An} ` B is derivable in L•µ.
(2) {x1 : A1, . . . , xn :An} ` M : B is derivable in F-λ•µ for some M , x1,

. . ., xn.
(3) {x1 : A1, . . . , xn :An} ` M : B is derivable in S-λ•µ for some M , x1, . . .,

xn.
(4) {A1, , . . . , An} |=ξ

p B for every •µ-frame <W, →, R>, valuation ξ, and
p∈W.

Proof. We get (1) ⇒ (2), (2) ⇒ (3), and (3) ⇒ (4) by Propositions 4, 1 and
6, respectively. Hence, it suffices to show that (4) ⇒ (1), which is given by the
following completeness theorem. ut
Theorem 4 (Completeness of L•µ). If {A1, . . . , An} ` M : B is not
derivable in L•µ, then there exist some •µ-frame <W0, →0, R0>, valuation ξ0,
and p0 ∈ W0 such that /|=ξ0

p0
B while |=ξ0

p0
Ai for every i (i = 1, 2, . . . , n).

The rest of the present section is devoted to proving this theorem. Suppose that
{A1, . . . , An} ` M : B is not derivable.

Let C and D be formulae, i.e., type expressions. We call C a component of
D, and write C ≤ D, if and only if

E[C/X] 'L D and X ∈ FTV (E)

for some type expression E and type variable X. We also define Comp(D) as:

Comp(D) = {C | C ≤ D}.
Note that Comp(D)/'L is a finite set (cf. e.g. [9, 8]). Let

F = { C | C ∈ Comp(B) or C ∈ Comp(Ai) for some i },
and define W0 and p0 as:

W0 = { p ⊂ F | C ∈ p whenever C ∈ F and p ` C is derivable2 }
p0 = { C ∈ F | {A1, . . . , An} ` C is derivable }

Note that W0 is a finite set since Comp(D)/'L is finite and L•µ has the ('L)
rule. Then, for each p ∈ W0, define p̃ as:

p̃ = { C ∈ F | p ` •C is derivable }
2 More precisely, Γ ′ ` C derivable for some finite Γ ′ ⊂ p.

Observe that p ∈ W0 implies p̃ ∈ W0, since if p̃ ` C is derivable for some
C ∈ F , then so is •p̃ ` •C by (nec); and therefore, p ` •C is also derivable,
i.e., C ∈ p̃. Note also that p ⊂ p̃ holds because L•µ has the (approx) rule. The
accessibility relations →0 and R0 are defined as follows:

p →0 q iff p̃ ⊂ q and q̃ /= q.

p R0 q iff p ⊂ q and p /= q.

We can easily verify that →0 and R0 are transitive, and p→0q implies p R0 q.
SinceW0 is finite, R0 is also converse wellfounded. We finally define the valuation
ξ0 as:

ξ0(X)p =
{

t (X ∈ p)
f (X /∈ p)

Obviously, ξ0 is hereditary by the definition of R0. Since B /∈ p0 while Ai ∈ p0

for every i, to finish the proof of the completeness theorem, it suffices to prove
the following lemma.

Lemma 1. Let C ∈ F and p ∈ W0. Then, C ∈ p if and only if |=ξ0
p C.

Proof. The proof proceeds by induction on the lexicographic ordering of <p,
r(C)>, and by cases of the form of C.

Case: C = X. Trivial from the definition of ξ0(X).

Case: C = D → E. For the “only if” part, suppose that D → E ∈ p, |=ξ0
q D,

and q = p or p R0 q. We get D ∈ q from |=ξ0
q D by induction hypothesis, since p

decreases to q or else r(D) < r(D→E), and D→E ∈ q from p ⊂ q. Therefore,
E ∈ q, and by induction hypothesis again, |=ξ0

q E. Thus we get |=ξ0
p D→ E. As

for “if” part, suppose that |=ξ0
p D→ E, i.e.,

|=ξ0
q D implies |=ξ0

q E whenever q = p or p R0 q (1)

Let q as:
q = { C ′ ∈ F | p ∪ {D} ` C ′ is derivable }.

Note that q = p or p R0 q. Since D ∈ q, we get |=ξ0
q D by induction hypothesis,

and then |=ξ0
q E from (1). Hence, by induction hypothesis again, E ∈ q, i.e.,

p ∪ {D} ` E is derivable, and so is p ` D→ E .

Case: C = •D. For the “only if” part, suppose that •D ∈ p. If p → q or
p R r → q for some r, then since p̃ ⊂ q and p ` •D is derivable, we get
D ∈ q. Hence, |=ξ0

q D by induction hypothesis. We thus get |=ξ0
p •D. For “if”

part, suppose that |=ξ0
p •D, i.e.,

|=ξ0
q D for any q if p → q or p R r → q for some r . (2)

Let q as:
q = { C ′ ∈ F | p̃ ∪ {•D} ` C ′ is derivable }.

If p → q, then |=ξ0
q D by (2); therefore, D ∈ q by induction hypothesis. Otherwise,

q̃ = q, i.e., also D ∈ q. Hence, p̃ ∪ {•D} ` D is derivable. On the other hand,
there is a derivation of ` (•D→D)→D corresponding to the Y-combinator.
Therefore, p̃ ` D is also derivable, and so is •p̃ ` •D by (nec). That is,
p ` •D is derivable; and therefore, •D ∈ p.

Case: C = µX.D. For the “only if” part, suppose that µX.D ∈ p, i.e., also
D[µX.D/X] ∈ p by ('L) rule. We get |=ξ0

p D[µX.D/X] by induction hypothesis,

since r(D[µX.D/X]) < r(µX.D); and therefore, |=ξ0
p µX.D by definition. For “if”

part, suppose that |=ξ0
p µX.D, i.e., |=ξ0

p D[µX.D/X]. We get D[µX.D/X] ∈ p by
induction hypothesis; and therefore, µX.D ∈ p by the ('L) rule. ut

This completes the proof of Theorems 4 and 3. Since the counter model
constructed in the proof of Lemma 1 is based on a finite frame, the logic L•µ
has the finite model property, and we therefore get the following corollary.

Corollary 1. The following problems are decidable.

(1) Provability in L•µ.
(2) Type inhabitance in S-λ•µ.
(3) Type inhabitance in F-λ•µ.

5 Relationship to the intuitionistic logic of provability

The logic L•µ permits self-referential formulae. In this section, we show that if
L•µ is restricted to finite formulae, i.e., those without any occurrence of µ, then
one gets the intuitionistic version of the logic of provability GL (cf. [5]), where
“intuitionistic” means that the interpretation is monotonic with respect to the
accessibility relation, and not provability in intuitionistic systems such as HA.
GL is also denoted by G (for Gödel), L (for Löb), PrL, KW, or K4W, in the
literature.

Definition 15 (Formal system iKW). We define a modal logic iKW, which
only allows finite formulae, by replacing the 'L rule of L•µ by the following
inference rule.

Γ ` •(•A→A)→•A
(W)

We observe that iKW is sound with respect to the Kripke semantics over •µ-
frames, i.e., Definition 14, because the (W) rule is derivable in L•µ, by (approx)
and (K), from the seemingly more general (•A → A) → A, which is derivable

by the Y-combinator. And conversely, the axiom schema W : •(•A→ A)→ •A
implies (•A→A)→A as follows:

{•A→A} ` •A→A
(assump)

{•A→A} ` •A→A
(assump)

{•A→A} ` •(•A→A)
(approx), (→E)

{•A→A} ` •A
(W), (→E)

{•A→A} ` A
(→E)

{} ` (•A→A)→A
(→I)

Then, since the only role of ('L) for finite formulae in the proof of Lemma 1
is the derivability of (•D →D)→D, which is used in the “if” part of the case
C = •D, we get the following.

Theorem 5 (Completeness of iKW). The formal system iKW is also Kripke
complete with respect to •µ-frames.

And hence, by Theorem 3, L•µ is a conservative extension of iKW.

6 Concluding Remarks

Two modal typing systems S-λ•µ and F-λ•µ, which are respectively based on
the simple and the F-semantics of types, and a formal system of the modal
logic behind them have been presented. We have shown that the modal logic
is Kripke complete with respect to intuitionistic, transitive and converse well-
founded frames. The completeness also connects provability in the modal logic
to type inhabitance in the two modal typing systems, and implies their decid-
ability. We have also shown that the modal logic is a conservative extension
of the intuitionistic version of the logic of provability. We have not, however,
yet obtained corresponding results for the extended typing systems S-λ•µ+ and
F-λ•µ+, which are also logically equivalent to each other, and completeness and
decidability of typing and typability of λ-terms in all the typing systems pre-
sented in the present paper are also still open.

References

1. Nakano, H.: A modality for recursion. In: Proceedings of the 15th IEEE Symposium
on Logic in Computer Science. IEEE Computer Society Press (2000) 255–266

2. Nakano, H.: A modality for recursion (technical report). Available as http://

www602.math.ryukoku.ac.jp/~nakano/papers/modality-tr01.ps (2001)
3. Hindley, R.: The completeness theorem for typing λ-terms. Theoretical Computer

Science 22 (1983) 1–17
4. Hindley, R.: Curry’s type-rules are complete with respect to F-sematics too. Theo-

retical Computer Science 22 (1983) 127–133
5. Boolos, G.: The logic of provability. Cambridge University Press (1993)

6. Barendregt, H.P.: Lambda calculi with types. In Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E., eds.: Handbook of Logic in Computer Science. Volume 2. Oxford
University Press (1992) 118–309

7. Cardone, F., Coppo, M.: Type inference with recursive types: syntax and semantics.
Information and Computation 92 (1991) 48–80

8. Amadio, R.M., Cardelli, L.: Subtyping recursive types. ACM Transactions on
Programming Languages and Systems 15 (1993) 575–631

9. Courcelle, B.: Fundamental properties of infinite trees. Theoretical Computer Sci-
ence 25 (1983) 95–169

Appendix: Proof of Theorem 2

We first give alternative definitions of tail finiteness and positively (negatively)
finiteness.

Definition 16. Let V be a set of type variables. We define subsets TFV, PF
and NF of TExp as follows:

TFV ::= X (X /∈ V)

| •TFV | TExp→TFV | µY.TFV ∪{Y }

PF ::= TVar | •PF | NF→PF

| µY.A (A ∈ TF{Y } ∩PF, and Y ∈ ETV −(A) implies A ∈ NF).

NF ::= TVar | •NF | PF→NF | C (C is an S->-variant)

| µY.A (A ∈ NF, and Y ∈ ETV −(A) implies A ∈ TF{Y } ∩PF).

Proposition 7. (1) A is tail finite if and only if A ∈ TF{}.
(2) A is positively finite if and only if A ∈ PF.
(3) A is negatively finite if and only if A ∈ NF.

It follows that tail finiteness and positively (negatively) finiteness are decidable
properties of type expressions. Through these alternative definitions, we get the
following proposition.

Proposition 8. Suppose that A ¹ B.

(1) If B is tail finite, then so is A.
(2) If B is positively finite, then so is A.
(3) If A is negatively finite, then so is B.

Proof of the first claim of Theorem 2. Suppose that Γ ` M : A is derivable
in S-λ•µ+. We consider the frame <N , >>, which consists of the set of non-
negative integers and the “greater than” relation on it, over the term model
<V, ·, [[]]> of untyped λ-calculus. Define a subset K of V as:

K =
{

[xN1N2 . . . Nn]
∣∣∣∣
x is an individual variable, n ≥ 0, and
Ni ∈ V for every i (i = 1, 2, . . . , n)

}
.

Taking ρ as ρ(x) = [x] for any x, we get [M] = [[M]]ρ ∈ IS(A)ξ
p by Theorem 1

for S-λ•µ+. Note also that K ⊂ IS(A)ξ
p for any A and p by Definition 8.

Since ξ can be any type environment, it suffices to show that M has a head
normal form whenever

(a) A ∈ TFV,
(b) ξ(X)p = K for every p and X /∈ V , and
(c) [M] ∈ I(A)ξ

p for every p.

The proof proceeds by induction on the complexity of A, and by cases of the
form of A. Suppose (a) through (c).

Case: A = X. In this case, I(A)ξ
p = ξ(X)p = K by (a) and (b). Therefore, M

obviously has a head normal form.

Case: A = •B. In this case, B ∈ TFV by (a). Therefore, M has a head normal
form by the induction hypothesis. Note that (c) implies [M] ∈ I(B)ξ

p for every
p, because there exists some q such that q → p.

Case: A = B → C. In this case, C ∈ TFV by (a). Let y be a fresh individual
variable. Since [M] ∈ I(B → C)ξ

p and [y] ∈ K ⊂ I(B)ξ
p for every p, we get

[My] ∈ I(C)ξ
p for every p. Therefore, My has a head normal form, say L, by the

induction hypothesis. There are two possible cases: for some K, (1) M ∗→
β

K ∈ K
and L = Ky ∈ K, or (2) M ∗→

β
λy. K and K ∗→

β
L. In either case, M has a head

normal form.

Case: A = µY.B. In this case, B ∈ TFV ∪{Y } by (a). By Definition 8, we
get I(µY.B)ξ

p = I(B[µY.B/Y])ξ
p = I(B)ξ′

p , where ξ′ = ξ[I(µY.B)ξ
p/Y], since

I(C[D/Y])ξ
p = I(C)ξ[I(D)ξ/Y]

p holds for any C and D. Note that (a′) B ∈
TFV ∪{Y }, (b′) ξ′(X)p = K for every p and X /∈ V ∪ {Y }, and (c′) M ∈ I(B)ξ′

p

for every p. Therefore, M has a head normal form by the induction hypothesis.
ut

As for the second claim of Theorem 2, we employ the following lemma.

Lemma 2. Suppose that A /' >. If Γ ` xN1N2 . . . Nn : A is derivable in
S-λ•µ+, then Γ (x) ¹ •m1(B1 → •m2(B2 → . . .→ •mn(Bn → C) . . .)) for some
m1, m2, . . ., mn, B1, B2, . . ., Bn and C such that

1. •m1+m2+...+mnC ¹ A, and
2. for every i (0 ≤ i ≤ n), Γ ` Ni •m′

iBi is derivable for some m′
i.

Proof. By induction on n. If n = 0, then since A /' >, the derivation ends with:

Γ ′ ` x : Γ ′(x)
(var)

... 0 or more (¹)’s
Γ ` x : A

Therefore, we get C ¹ A by taking C as C = Γ ′(x). If n > 0, then for some m′,
D and E, the derivation ends with:

...
Γ ′ ` xN1N2 . . . Nn−1 : •m′

(D→ E)

...
Γ ′ ` Nn : •m′

D

Γ ′ ` xN1N2 . . . Nn : •m′
E

(→E)

... 0 or more (¹)’s
Γ ` xN1N2 . . . Nn : A

Note that •m′
E ¹ A, and E /' > since A /' >. By induction hypothesis,

Γ ′(x) ¹ •m1(B1 → •m2(B2 → . . . → •mn−1(Bn−1 → C ′) . . .)) for some m1, m2,
. . ., mn−1, B1, B2, . . ., Bn−1 and C ′ such that:

– •m1+m2+...+mn−1C ′ ¹ •m′
(D→ E), and

– for every i (0 ≤ i ≤ n−1), Γ ` Ni •m′
iBi is derivable for some m′

i.

This implies that there exist some m′′, j, k, l, Bn and C such that:

– •m1+m2+...+mn−1C ′ ' •m′′
(Bn → C),

– m′′−j ≤ m′−k, and
– •kD ¹ •j+lBn and •j+lC ¹ •kE.

We then get C ′ ¹ •mn(Bn → C), where mn = m′′−m1−m2− . . .−mn−1; and
therefore, Γ (x) ¹ •m1(B1→•m2(B2→ . . .→•mn−1(Bn−1→•mn(Bn→C) . . .)).
On the other hand, •m1+m2+...+mn−1+mnC = •m′′

C ¹ •m′−kC ¹ •m′−k+j+lC ¹
•m′

E ¹ A and •m′
D ¹ •m′−k+j+lBn. We get the derivation of Γ ` Nn :

•m′−k+j+lBn from the one of Γ ` Nn : •m′
D by (¹). ut

Proof of the second claim of Theorem 2. Suppose that Γ ` M : A is derivable
in S-λ•µ+ for some A and Γ such that A is positively finite and Γ (x) is negatively
finite for every x ∈ Dom(Γ). We show that for every n, every node of the Böhm-
tree of M at the level n is head normalizable, by induction on n. Since A is
positively finite, M is head normalizable by (1) of Theorem 2, that is

M ∗→
β

λx1. λx2. . . . λxm. yN1 N2 . . . Nl

for some x1, x2, . . ., xm, y, N1, N2, . . ., Nl. By (3) of Proposition 2, Γ `
λx1. λx2. . . . λxm. yN1 N2 . . . Nl : A is also derivable; and this implies that so
is Γ ∪ {x1 : B1, x2 : B2, . . . , xm : Bm} ` yN1 N2 . . . Nl : C for some B1, B2,
. . ., Bm and C such that:

B1 →B2 → . . .→Bm → C ¹ A.

Since A is positively finite, so is C, i.e., C /' >, and B1, B2, . . ., Bm are negatively
finite by Proposition 8. Let Γ ′ = Γ ∪ {x1 : B1, x2 : B2, . . . , xm : Bm}. Since
C /' >, by Lemma 2, Γ ′(y) ¹ •k1(D1 → •k2(D2 → . . .→ •kl(Dl → E) . . .)) for
some k1, k2, . . ., kl, D1, D2, . . ., Dl and E such that:

– •k1+k2+...+klE ¹ C, and
– for every i (0 ≤ i ≤ l), Γ ′ ` Ni : •k′iDi is derivable for some k′i.

Since C is positively finite, so is E, i.e., E /' >; and therefore, Di is positively
finite for every i (0 ≤ i ≤ l) because Γ ′(z) is negatively finite for every z ∈
Dom(Γ ′). Therefore, by the induction hypothesis, for every i (0 ≤ i ≤ l), every
node of the Böhm-tree of Ni at a level less than n is head normalizable; that is,
so is one of M at a level less than or equal to n. ut

