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Abstract

The catch and throw mechanism is a programming construct for non-local exit. In practical
programming, this mechanism plays an important role when programmers handle exceptional
situations. In this thesis we give typing systems which capture the mechanism in the proofs-as-
programs notion. The typing systems can be regarded as a constructive logic with facilities for
exception handling, which includes inference rules corresponding to the operations of catch and
throw. We show that we can actually regard their proofs as programs which make use of the catch
and throw mechanism by a natural interpretation. On one hand the catch and throw mechanism
provides only a restricted access to the current continuation, on the other hand its logic is still
constructive, in contrast to the works due to Griffin and Murthy on more powerful facilities
such as call/cc (call-with-current-continuation) of Scheme. We also capture the non-determinism
introduced by the catch and throw mechanism in a consistent way.
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Chapter 1

Introduction

1.1 Backgrounds

It 1s well known that constructive proofs can be regarded as computer programs by a notion called
“proofs as programs”. By this notion, we can extract executable programs from constructive
proofs of sentences that correspond to the specifications of the programs by a “realizability
interpretation” [16]. The same schema can be observed in the area of constructive type theories, in
which types specify what programs do. The notion of “proofs as programs” is also called “formula
as types”, “propositions as types” or the Curry-Howard isomorphism [14], and is summarized as

the following correspondences.

Computer programming Constructive logic or type theory
programs proofs
specifications formulas or types
program development theorem proving
programmers mathematicians or ...

This paradigm provides a theoretical basis for a formal method of computer programming, in
which programmers construct formal proofs of theorems that specify what the programs do, and
target programs in some form are automatically extracted from the formal proofs. The correctness
of the programs relative to their specification, that is, the theorems, is defined by a certain
interpretation of formulas of the formal system, and is assured by the soundness metatheorem for
the formal system with respect to the interpretation. In other words, programmers simultaneously
construct and verify the computer programs in this paradigm.

In the last decade, many works have been intensively done both in practical and in theoretical
approaches [5, 6,12, 13, 19, 26, 35, 36], in which the most of their attention has been concentrated
on the area that can be regarded as an application of the standard constructive logic, because we
had already have rich results on the constructive logic itself, and the conventional constructive
logics really have enough strength with respect to the class of provable theorems, that is, the
class of realizable specifications. However, from the viewpoint of practical programming, some
aspects of the logical activities of programmers have not been captured in this paradigm. For
example, the class of proofs, that is, the class of available programs is also important for the
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programmers as well as the class of provable theorems, but i1s not ever discussed intensively.
Actually, many practical programming languages provide some additional programming facilities
to programmers in order to extend the class of programs. Although these facilities do not extend
the class of realizable specifications, that is, we can construct equivalent programs without such
additional facilities, they have important roles for practical program development. The main
aim of this thesis is to capture one of such programming facilities in the notion of “proofs as

programs”.

1.2 The catch and throw mechanism

The catch and throw mechanism is a programming facility for non-local exit. We can find
examples of the mechanism in some practical programming languages such as C [15] and Common
Lisp [32]. We give some primary introduction about this mechanism by taking Common Lisp
as an example. In the case of Common Lisp, (catch tag form) is a special form that serves as
a target of transfer of control by another special form (throw tag form). At the evaluation of
(catch tag form), a catcher marked with the tag is established, and the form is then evaluated.
The result of the form is returned from the catch, except that if a throw special form with the
same tag is executed during the evaluation, then the evaluation is immediately aborted and the
catch returns a value specified by the form of the throw. For example, the evaluation process
of (+ (catch ’u (+ 2 (+ 3 5))) 8) proceeds as follows.

Eval: (+ (catch ’u (+ 2 (+ 3 5))) 8)
Eval: (catch ’u (+ 2 (+ 3 5)))
: EBval: 'u
Return: u
Eval: (+ 2 (+ 3 5))
: EBval: 2
Return: 2
Eval: (+ 3 B)
: FEwval: 3
Return: 3
FEuval: 5
Return: 5
. Apply: +to3 and 5
Return: 8
;. Apply: +to2 and 8
Return: 10
Return: 10
FEuval: 8
Return: 8
. Apply: + to 10 and 8
Return: 18

On the other hand, the evaluation process of (+ (catch ’u (+ 2 (+ 3 (throw ’u 5)))) 8)

proceeds as follows.
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Ez{al: (+ (catch ’u (+ 2 (+ 3 (throw ’u 5)))) 8)
Ez{al: (catch ’u (+ 2 (+ 3 (throw ’u 5))))

Eval: ’u
Return: u
Eval: (+ 2 (+ 3 (throw ’u 5)))
: Bval: 2
Return: 2
Eval: (+ 3 (throw ’u 5))
Fval: 3
Return: 3
Eval: (throw ’u 5)
: Fval: ’u
Return: u
FEuval: 5
Return: 5
: : Apply: throw to u and 5
Return: 5
FEuval: 8
Return: 8
Apply: + to 2 and 8

Return: 10

In practical programming, the catch and throw mechanism plays an important role when pro-
grammers handle exceptional situations. Suppose, for example, we have to construct a program
P with a specification represented by a sequent I' — C'V E of L] combining three subprograms
QT — AVE, R:TA— BVE and S:I'B — CVE, where C is the normal output for the
input I', and E is an error signal which denotes that there is something wrong in the input.
The specifications of @@, R and S say that such errors may be detected in the execution of these
subprograms. In this situation, the construction of P in LJ would be as follows,

‘R rs—-CcvyE EFE—-CVE (V—) (init)
I'A— BVE I'BvVE —-=CVE F—=F
| )LL)
CQ I'A—CvVvE E—>CVE(V_>)
I' — AVE IN''AvE —-CVE
I ~CVE (cut),

where applications of structural rules are omitted. The constructed program P would work as
follows. The program P first calls the subprogram @ and gets its return value, then checks
whether it denotes an error or not. If not, P calls the subprogram R with that value and gets
its return value. P again checks the value and calls S if it does not denote an error. Eventually,
P returns the value returned by S. If P detects an error in the values returned by @ or S, it
immediately returns a value denoting an error. We can find an inefficiency that whenever P gets
values from the subprograms it must check whether they denote an error or not. This is often
found in practical programming without the catch and throw mechanism. If the mechanism is
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available, programmers can concentrate on the main stream of programming as if no exceptional
situation can arise, since error signals are passed through ordinary language constructs. Following
the proofs-as-programs notion in the opposite direction, we can find that the problem comes from
the restriction of LJ that only one formula is admissible in the right-hand side of sequents. If the
restriction is dropped as in LK, we can construct P’ of a specification I'—C' E' from subprograms
Q' - AF, R:TA— BEFE and S':I'B— CFE as follows,

ZR/ ZS/
Q! I'A—BF TI'B—CF (cut)
I'— AF I'A—-CFE
(cut),
I' —CF

where structural rules are again omitted. The proof is much simpler than the previous one
and easy to develop. The point 1s that exceptional conclusions are admitted besides the main
conclusion and we can proceed the proof construction as if they do not exist. It reflects the
programmer’s reasoning behind the catch and throw mechanism well. Of course, we must justify
such a logic constructively so that correct programs can be extracted from the proofs.

In this thesis, we present such an attempt to extract a logical structure from the program-
mer’s reasoning concerning exception handling by the catch and throw mechanism, and capture
the mechanism in the notion of “proofs as programs” by constructive frame works and their

realizability interpretations.

1.3 Overview of the thesis

Chapter 2 gives a typing system for a simple programming language equipped with the catch and
throw mechanism. The aim of this chapter is to capture the mechanism with a fixed evaluation
strategy, the call-by-value strategy. Section 2.1 introduces a calculus with the catch and throw
mechanism, and gives its operational semantics by a set of reduction rules in the manner of
Felleisen et al. [7]. This semantics should be a natural translation of the standard operational
semantics of the mechanism in practical programming languages. Section 2.2 gives a typing
system Lf/'?’ of the calculus, and Section 2.3 gives a realizability interpretation of the typing
system and shows how the catch and mechanism can be captured by proving the soundness
theorem.

Chapter 3 introduces an abstract stack machine to imitate the standard implementation of the
catch and throw mechanism in practical programming languages, and shows that the semantics
defined by this machine is equivalent to the one given in Section 2.1. Another realizability
interpretation of Lfﬁv defined directly by the abstract machine is also given.

Chapter 4 discusses the formal system regarding it as a logic. We show that Lfﬁv s a
conservative extension of the propositional fragment of the standard intuitionistic logic such as
Gentzen’s LJ or NJ. We reformulate Lfﬁv into a sequent calculus style formal system in order to
clarify the difference between Lfﬁv and the standard formulations of classical and intuitionistic
logic. The cut-elimination theorem of the sequent calculus style reformulation is also given.

Chapter 5 deals with the non-determinism introduced by the catch and throw mechanism.
The reduction rules of the calculus given in Chapter 2 is naturally extended to capture this

non-determinism, in which any evaluation strategy should be allowed. The typing system of the
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calculus is also extended. We show that although the well-typed terms of the system do not have
the Church-Rosser property, they have the subject reduction property instead.

Chapter 6 is devoted to construction of a term model of the extended system introduced in
the previous chapter. Unfortunately, the standard method is not enough to this construction,
and a set of terms that has a certain property 1s required for the domain of interpretation. By
this term model, we show the strong normalizability of the well-typed terms and the soundness
of the extended typing system relative to an extended realizability interpretation.

1.4 Related works

From a computational point of view, the catch and throw mechanism is just a subcase of more
powerful facilities for control such as call/cc of Scheme and Felleisen’s C operator [7], and the
relation between such facilities and the computational meaning of classical logic has been inves-
tigated in various ways [3, 11, 21, 20, 22, 27, 28, 29, 31], where the computational behavior of
the facilities is captured as translation processes of classical proofs into intuitionistic ones [§].
Murthy showed that classical formal proofs can be regarded as programs with such control
facilities [21, 20], where Felleisen’s C operator corresponds to the following inference rule of

classical logic.
_|_|A

2 (0)

By a simple modification of Freidman’s work [8], he showed that classical proofs of a formula A

can be translated into intuitionistic proofs of (A‘I> D ®) D ® for any formula ®, where

A* = 4 (A is atomic)
(-4)* ATS @
(AAB)? = A®AB®
(AvB)* = A®vB®
(ADB)® = A®>(B*>®)D@
(V. A)* = Ve (4®>®)D0)
(E|$.A)‘I> = Jz.A%.

Note that if ® does not include any —, D or V, then we can translate classical proofs of ® into
intuitionistic ones since ®® = (® D ®) D ® in this case. This translation of formulas that maps
A to A? corresponds to the continuation-passing-style translation [30] of programs of type A,
and the computational meaning of C operator can be regarded as a mechanism that transforms
intuitionistic proofs of ((—|—|A)‘I> D ®) D ® into ones of (A% D @)D &.

However, from the viewpoint of formal method for computer programming, only a restricted
class of formulas, for example, I3 sentences, are allowed for the specification of programs in order
to assure the total correctness of the programs in these classical frameworks. On the other hand,
any of such restrictions is not required for the frameworks presented in this thesis, that is, any
formula is allowed as a specification of programs. More importantly, the main aim of our work
is to capture the logic behind the use of such facilities in practical programming rather than to
capture their computational behavior. We summarize the basic properties of our frameworks in
comparison among others in the following table.
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framework logic trick pii)og(i‘fa:s non-determinism
Murthy [20] classical C operator restricted no
Ap-calculus [29] classical [ operator restricted no
LC [9] classical involutive negation | restricted no
/\ISD%Z) [3] classical involutive negation | restricted yes
Lfﬁv intuitionistic catch/throw yes no
Leys intuitionistic catch/throw yes yes




Chapter 2

A typing system for the catch

and throw mechanism

2.1 A calculus with the catch and throw mechanism

In this section we introduce a simple programming language equipped with the catch and throw

mechanism, and give its operational semantics.

2.1.1 Syntax

We first give the syntax of the language.

Definition 2.1.1 (Constants and variables) We assume that the following disjoint sets of
individual constants, individual variables and tag variables are given. The syntax of the calculus

is defined relatively to these three sets.

Const : aset of individual constants ¢, d, .. ..
Var . a countably infinite set of individual variables z,y, z, . . ..
Tvar : a countably infinite set of tag variables u, v, w, ...

Definition 2.1.2 (Terms) We define a set Term of terms by

Term ::= Const | Var
| let Var=Term. Term
| throw Tvar Term | catch Tvar Term
| AVar.Term* | TermTerm
| <Term, Term> | projyTerm | projoTerm
| injq Term | injoTerm | case Term Var.Term Var.Term
| & Twvar. Term | TermTvar

where Term® stands for the set of terms that have no free occurrence of tag variables. We use
M,N,K,L,...to denote terms.
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Free and bound occurrences of variables are defined in the standard manner. We regard a tag
variable u as bound in catch u M and ku. M. We denote the set of individual and tag variables
occurring freely in M by FIV(M) and FTV (M), respectively.

Example 2.1.3 (Terms)
Az.case z y.(injo y) z.(injq 2)
catch u ((kv. projy <z, throw v y>)u)

Note that we have a restriction on terms of the form A z. M. For example, A z. throw u x is not
a term since it has a free occurrence of a tag variable u.

The terms of the forms throw Tvar Term and catch Twvar Term provide the catch and throw
mechanism of the language. Roughly, these terms correspond to throw and catch of Common
Lisp [32], respectively. The terms & Tvar. Term and Term Tag are used for tag-abstraction and
tag-instantiation, respectively. These terms provide a way of passing tags. Note that tags can
not be passed by usual lambda-abstractions and applications since they are not terms.

We also define the alpha-convertibility in the standard manner where we allow renaming
of bound tag variables as well as bound individual variables. Hereafter, we identify terms by
this alpha-convertibility. We use M[Ni/z1,..., N,/x,] to denote the term obtained from a
term M by substituting Ni,..., N, for each free occurrence of individual variables z1, ..., z,,
respectively, with alpha-conversion for avoiding capture of free variables. Similarly, we also use
Mlvi/uy, ..., va/uy,] to denote the term obtained from M by substituting vy, ..., v, for each free
occurrence of tag variables uq, ..., u,, respectively. Note that in the case that Ny,..., N, have
free tag variables, M[Ny/x1, ..., Ny/2,] may not be a well-formed term, because Ny,..., N, can
introduce some free tag variables into lambda-abstractions.

Proposition 2.1.4 Let M be a term, and let x1,..., 2y and uy, ..., u, be sequences of distinct
individual and tag variables, respectively. If Ny, ..., Ny are closed terms and vy, ...,v, are tag
vartables, then M[Ny/x1, ..., Np/@m,v1/ur, ..., 0/us] is a term.

Proof. Obvious from the definition of Term. [

2.1.2 Operational semantics of the calculus

We define a call-by-value evaluator of terms to give an intuitive semantics of this calculus. The
evaluator is defined in terms of evaluation contexts and a set of rewriting rules for terms. The
basic idea is due to Felleisen et al. [7]. In Chapter 3 we will give another operational semantics by
an abstract machine which imitates the standard implementation of the catch/throw mechanism

in some practical programming languages.

Definition 2.1.5 (Values) We define a set Val of closed terms as follows.
Val ::= Const
|  AVar.Term | <Val, Val>
| injq Val | injo Val
|  &Tvar. Val | &Tvar. throw Tvar Val .

Elements of Val are called values, and we use V, V', W, W' ... to denote values.
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Note that any value must be a closed term. Therefore any value of the form
& Tvar. throw Tvar Val

must be & u. throw u V for some tag variable v and some value V.

Example 2.1.6 (Values)

Av.(Ay.y)
<injq ¢1, & u.throw u cy>

Definition 2.1.7 (Evaluation contexts) We define a set C' of pseudo terms which have a hole,

denoted by *, in them as follows.

C 1= %
|  let Var=C.Term
|  throw Tvar C' | catch Tvar C
|  CTerm | ValC
|  <C, Term> | <Val, C> | projjC | projoC
| inj;C | injaC | case C Var.Term Var.Term
|  &kTvar.C | CTayg.

Elements of C' are called evaluation conterts. We use C, C’, ... to denote evaluation contexts.
We use C[M] to denote the term obtained from C by replacing the hole x by a term M.

By the definition, no evaluation context captures free individual variables placed at the hole, but
it may capture free tag variables at the hole. For example, if C = catch u * and M = throw u

N, then C[M] = catch u (throw u N).
Example 2.1.8 (Evaluation contexts)
(Ay. M (projq y)) <+, N>
catch u (injq (throw u *))
Proposition 2.1.9 If C and C' are evaluation contexts, then C[C'] is also an evaluation contexl.
Proof. Obvious from the definition of evaluation contexts. []

Proposition 2.1.10 If a term M can be writlen as M = C[throw u V], where V is a value and
C does not capture u, then the combination of such C and throw u V s unique.

Proof. By induction on the structure of C. Note that no value has free occurrences of tag variables.

O
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Definition 2.1.11 (Rewriting rules) The call-by-value rewriting i— is defined by the follow-
ing rules; where C is an arbitrary evaluation context such that C # * and € does not capture u.
Note that none of redexes is a value.

catchuV +— V
catch u C[throw u V] +——= catch u (throw u V)
CBV
catch u (throwu V) — V
CBV
let a=V. M +—— M[V/z]
CBV
Az M)V — M[V/z]
ku.Clthrowu V] — ku.throwuV
(ku.V)v — V
(ku.throw u V)v — throwv V
proj; <V, W> — V
projo <V, W> i— W
case (injy V) 2. M y N — MI[V/z]
case (injo V) 2. M y. N —— NI[V/y]

Proposition 2.1.12 Let M be a term. If M —= N for some N, then N is unique.

CBV

Proof. Obvious from the definition of —. O

Definition 2.1.13 (Evaluation steps) A call-by-value evaluation step — is defined by

C[M] — C[N] if and only if M —— N.
CBV

CBV

Example 2.1.14 Let M be a term, and let V and V' be values.

(catch u (A z. M) (throw u (Az.2))))V — (catch u (throw u (Az.2)))V

CBV

— (Ar.n)V

CBV

I 7
CBV

catch u (projo <V, V/>) — catchuV’

CBV

_. !
CBV
catch u ((Az.kv.throw v ) V) u) —v catchu ((kv.throw v V) u)

— catch u (throw u V)

CBV
V

—
CBV

Let ﬁ be the transitive and reflexive closure of the relation v We write M o Nif Nisa
normal form of M w.r.t. —, thatis, M > N and N = K for any K.
CBV CBV CcBV

Proposition 2.1.15 If M —— N, then C[M] == C[N] for any evaluation context C.
CBV CBV

Proof. Obvious from the definitions of —- and evaluation contexts. [
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Proposition 2.1.16 Let x1,...,x, and y1,..., Yy, be sequences of individual variables, and sup-
pose that xy,...,x, are distinct. If M — N, then Myi/x1,...,yn/2n] ¢ Nlyi/z1,. ..,
Un/xn]. Similarly, let uy, ... u, and vy,...,v, be sequences of tag variables, and suppose thal
u, ..., up are distinct. If M — N, then Moy /uy, ... vn/un] —= Nvi/u, ..., v /un].

CBV

Proof. Obvious from the definition of —. O

Proposition 2.1.17 If M is not a normal form, then M can be wrillen in a unique way as

M = C[N] for some evaluation context C and some redex N, i.e., N o W for some K.

Proof. Since M is not normal, there exists at least one combination of such C and N. We can

show the uniqueness by induction on the structure of C. [

Therefore, if M o N, then N i1s unique. But note that N may not be a value even if M o N.

For example, throw u V' et throw u V', but throw u V' is not a value.
Proposition 2.1.18 Every value s a normal form.
Proof. Obvious from the definition of —-. [J

Proposition 2.1.19 Let V be a value. Let u and C be a tag variable and an evaluation context,

respectively. If C does not capture u, then C[throw u V] is a normal form.

Proof. By induction on the form of C. Note that C[throw u V] is not a value, because it is not

a closed term. [

2.2 The typing system

We introduce a typing system fﬁv of the language given in the previous section, which can be

regarded as a logical system that captures the catch/throw mechanism.

Definition 2.2.1 (Type expressions) We have five kinds of {ype expressions in Lfﬁv as fol-
lows.
A : atomic type expression
AAB : conjunction
AV B : disjunction

ADB : implication

A<B @ exception

Type expressions are also called formulas.

The last one is introduced to handle the catch/throw mechanism and represents another kind of
disjunction. It corresponds to the type of tag-abstractions, i.e., terms of the form « Tvar. Term.
We give a precise meaning to the connective < by a realizability interpretation later.

Definition 2.2.2 (Type-contexts) An individual type-coniext, or an individual context for
short, is a finite mapping which assigns a type expression, 1.e., a formula, to each individual
variable in its domain. We use {x1: A1,..., 2y Ay} to denote an individual type-context whose
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domain is {1, ..., 2, } and which assigns A; to «; for any 7, where A;,... A, are type expres-
sions, and @1, ..., o, are distinct individual variables. A tag type-context, or a tag context for
short, is similarly defined as a finite mapping which assigns a type expression to each tag variable
in its domain. We use {uy:By,...,u,:B,} to denote a tag type-context, where uy, ..., u, are

distinct tag variables.

Definition 2.2.3 (Typing judgement) Let T’ be an individual type-context, and A a tag type-
context. Let M be a term, and C' a type expression. Typing judgements have the following form.

THAM:C;A.

A typing judgement {@1: Ay, .. e, At M C s {ur: By, ... uy, : B} roughly says that when
we execute the program M supplying values of the types A; ... A,, for the corresponding free
variables xq, ..., z,, of the program, it normally returns a value of the type C, otherwise the
program exits with a value which belongs to one of the types E;...E,. Let us explain by
example. If we have a derivation of a typing judgement {: A, y: B} - M :C; {}, then

1. FIV(M) C {»,y}, and

2. if K and L satisfy the specifications A and B, respectively, then the evaluation of M[K/«,
L/y] terminates with a value that satisfies the specification C'.

Note that this corresponds to the standard interpretation of simply typed lambda calculus. On
the other hand, {:A,y: B} = M :C; {u: E} says that

1. FIV(M) C {=,y},
2. FTV(M) C {u}, and
3. if K and L satisfy the specifications A and B, respectively, then

a. the evaluation of M[K/x, L/y] terminates with a value that satisfies the specification
C, or

b. the evaluation of M[K/x, L/y] causes a throw-operation of a value to the tag u, which
is not caught by catch-terms, and the thrown value satisfies the specification E.

That is, there are two possible results of the evaluation of M in the second example. The precise

meaning of typing judgements is given in the next section by a realizability interpretation.

CBV

Definition 2.2.4 (Typing rules) The inference rules of L7, are as follows.

(var)

Tu{z:A}Fa:A; A

FTEFN:A;A TU{z:A}YFM:C; A
I'Flete=N.M:C; A

(let)

THM:E; A THM:A; AU{u:A)
(throw) (catch)
['Fthrowu M:A; AU{u:F} I'Fcatchu M:A; A
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TFM:A;A THFN:B; A

(A-T)
<M, N>:AAB; A
'-M:AAB; A '-M:AAB; A
- (A-E) - (A2-E)
I'Fprojy M:A; A I'Fprojo M :B; A
rEM:A; A 'EM:B; A
LI (Vl_I) . . (\/2—1)
'tinjy M:AVEB; A I'injo M :AVB; A

IFL:AVB;A TU{e:A}FM:C; A TU{y:B}FN:C;A

(V-E)
I'Fcase Lx. My N:C; A
Tru{z:A}FM:B; {} 'FM:ADB; A THEN:A; A
(>-1) (>-E)
I'FAe. M:ADB; A '-MN:B; A
THM:A; AU {u:E} THM:A<E; A
(«1) («+E)
F'FruM:A<dE; A 'rMu:A; AU{u:FE}
Example 2.2.5 (Derivations) Let ['be as T'= {2 A, f: AD A}.
(var) ——————— (var)
TFf:ADA; {} F'Fa:A;{}
(var) (O-E)
Tu{y:B}ra:4;{} Tk fa:A;{}
(DO-1) (throw)
FT'FAy.2:BDA; {u:4} 't throwu (fz): B; {u: A} .
Tk (Ay.z)(throwu (fz)):A; {u: A} ioh (>-E)
'k catch u ((Ay. z) (throw u (fz))): 4; (cateh) ,
{r:AYF A f.catch u (Ay. 2) (throw u (f2))): (ADA)DA; _I))

FAz A f.catchu (Ay. z) (throw u (f2)): AD(ADA)DA;

There is nothing special except for (throw), (cateh), (O-1), (<«-I) and (<E). If we have a term
M of a type E, we can treat the term throw u M as if it belongs to an arbitrary type A, but
in reality, the evaluation of throw u M causes a throw-operation of the result of M to the tag
u instead of returning a value of A. On the other hand, if we have a term M of A which may
throw a value of A to the tag u during the evaluation of M, then we can treat catch u M as
a term of A which causes no throw-operation to u. Once we adopt the interpretation of typing
judgements explained above, these rules for catch and throw are quite natural.

The most important point about our typing rules is a restriction on the rule (2-T). We can
introduce a A-abstraction only if its body has no free tag variable, that is, the tag context of
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the premise must be empty. If we dropped this restriction, our intended interpretation of typing

judgements would be affected. Consider the following example.

A Fea g )

{e:A}Fthrowua:B; {u: A}
{}FAz.throwuaz:ADB; {u:A}

(throw)
(>-1)

The derived judgement says that the evaluation of Az.throw u z terminates with a value of
AD B, or a value of A is thrown to the tag u during the evaluation. But the evaluation of
Az.throw u x immediately terminates with itself, which is not a value of A D B. Note that
throw u 2 is not evaluated until A z.throw u z is applied to some value of the type A. From
the logical point of view, this restriction on (D-1) is required to keep the system constructive.
We shall discuss this point in Chapter 4.

The restriction on (D-1)-rule leads us to introduce the new connective <. We can not construct
any function that may throw something to the outside of the function without the new connective,
because the body of the A-abstraction must not have any tag variable. We can construct such a

function by the new connective as follows. Let T be as T = {2 : AV B}.

(var)

Tu{y:A}Fy:4; {u:B}
: Tu{z:B}Fz:B;{}
(var) (throw)
'Fz:AvB; {u:B} : Tu{z:B}Fthrowuz:A; {u:B} .
V-
'k case z y.y z.(throw u z): A; {u: B} (o) ( )
q_
I'F ku.case z y.y z.(throwu z): A< B; {}

{}FAz. ku.case z y.y z.(throw u z) :(AV B) D(A< B); {}

(var)

(>-1)

Let M be as M = Az.xku.case ¢ y.y z.(throw u z), and let N be a term of the type AV B.

The function M can be used as follows.

{}I—M:(AVB:)D(AdB); {3 {}I—N::4VB; {3
{dFMN:A<B; {}
(«B)
{FMN)v:A; {v:B}

(O-E)

Normally the function M returns a value of A, otherwise it throws a value of B to the given tag

v.

2.3 A realizability interpretation

In this section we give a realizability interpretation of Lfﬁv to show how the catch/throw mech-

anism can be captured in it.
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2.3.1 The realizability

Let A be a mapping which assigns a subset of Const to each atomic type. The realizability is
defined relatively to this mapping A.

Definition 2.3.1 (Realizability of types) Let V be a value, and A a type. We define a

relation r between values and types as follows.
1. Ve Aiff Ve A(A), if A is an atomic type.
2. Vr AL ANAQ iff V = <V, Vo> for some Vi and V5 such that V) r A; and Vo r As.
3. Ve A VA iff V=inj, W and W r A; for some W and ¢ (i = 1,2).

4. Vr A DA iff V.= Ax. M for some term M such that for any value W, if W r Ay, then
M[W/z] e V' and V' r A, for some value V.

5 Vr A <A; iff V=ku. M for some u and M such that

(a) M is a value and M r Ay, or
(b) M = throw u W and W r A, for some value .

If the relation holds between a term and a type, we say that the term realizes the type, and the

term is a realizer of the type.

Definition 2.3.2 (Interpretation) We define the interpretation of typing judgements as fol-
lows. The relation

{ey i Ay, oo A Y E M C s {uy By, up s B

holds if and only if for any closed terms K, ..., K,, such that K; W, and W; r A; for some

Wi (1<i<m),

-
CBV

1. MK /z1,..., Kn/Tm) &, Vand Vr C for some V, or

2. M[K1/xy,...,Kn/em] e Clthrow u; V] and V r B; for some j, V and € which does

not capture u;.

This interpretation is essentially the same as the standard realizability interpretation of NJ in
the case that the type C does not include any occurrence of <« and n = 0. It should also be
noted that the logical connective <« corresponds to the semicolon of a typing judgement as D
corresponds to .

Lemma 2.3.3 Suppose that {x1: A1, ..., 2m  Ap} E M :C;{uy:By1,... uy: By} holds. and let
Y1 ... Ym and vy ... v, be a sequence of distinct individual variables and a sequence of distinct
tag variables, respectively. Then

A ym s A} E MG/Z,6/4]5 {vi: By, ... 00 Bn}
also holds, where M[§/%, 0/ stands for M[y1/x1, ..., Ym/Tm,v1/u1, ..., 0n/Us].

Proof. Since M[j/#,¥/@[K /7] = MK /%, ¥/, straightforward from the definition of T' k
M :C; A by Proposition 2.1.16. []
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2.3.2 Soundness

The following soundness theorem assures us that we can regard the proofs of the formal system
as programs which satisfy the specification defined by the realizability interpretation of the
conclusion.

Theorem 2.3.4 (Soundness) If T - M :C; A is derivable in Lfﬁv, then ' E M :C; A holds.

Proof. By induction on the structure of the derivation. Let T' be as T' = {x1: A1, ..., &m A},
and let Abeas A ={uy:B1,...,u,:Bn}. Let Ky,..., K, be closed terms such that K; e W;
and W; v A; for some W; (1 < ¢ < m). Each induction step is done by cases according to the
rule applied in the last step of the derivation.

Case 1: The last rule is (var). Trivial.

Case 2: The last rule is (let). Let T My :D; Aand TU{z: D} F M3 :C'; A be the premises,
that is, M = let z=M;. M5. By the induction hypothesis, T F My:D; A and TU{z: D} F
My :C'; A hold. Therefore for some Vi,

1. My[K /7] o, Viand Vir D, or

2. My[K /7] &, C'[throw u; Vi] and Vi x B; for some j (1 <j < n) and €' which does not

capture u;.

Let 2’ be a fresh individual variable. In the first case,

(let z=M;. My)[K/Z] = let Z/=M[K/Z]. Ms['/Z][K /]
=5 let /=Vi. Mo[2/ /][R /4]
v Mol (K /&[V1/ 2]
= My[Vi/Z[K /7).

Since TU{z:D} E M>:C; A and V; ¢ D, for some V5,
Ms[Vi/)[K/&] &= Vo and VarC, or

M|V /2K ) #] &, Clthrow v; V5] and Vor B;

for some j (1 < j < n) and C which does not capture v;. Therefore, one of the two conditions of
Definition 2.3.2 is satisfied. In the second case, let C be as C = let 2/=C'. My[2'/2][K /7).

(let z=My. My)[K/8] = let 2/=M[K/7]. Mo[2'/2][K /3]
o let 2/=C'[throw u; Vi]. My[2//2][K/ )

= (C[throw u; V1].

Since C does not capture u;, the second condition of Definition 2.3.2 is satisfied in this case.
Therefore ' F let z=M;. M5 ; A holds.
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Case 3: The last rule is (throw). Let T+ M’: By ; A’ be the premise, where A = A’U {uy,: By }
and M = throw u; M’. By the induction hypothesis, for some V',

e ' /
L M'[K/#] = V' and V'r By, or

2. M[K/&] > C'[throw u; V'] and V' r B; for some j (1 < j < n) and €’ which does not
CBV J J

capture u;.
In the first case,
(throw u;, M")[K/Z] = throw u; M'[K /Z] — throwu, V"

Therefore the second condition of Definition 2.3.2 is satisfied since V' r By. In the second case,
let C be as C = throw u; C'.

(throw uy, M')[K/Z] = throw u; M'[K/Z]
—~  throw u; C'[throw u; V']

CBV

= (C[throw u; V'].
Since C does not capture u;, the second condition of Definition 2.3.2 is satisfied also in this case.
Therefore I' F throw u; M’ :C; A holds.
Case 4: The last rule is (catch). Let T'F M’ :C'; AU{v:C} be the premise, where M = catch v
M'. By the induction hypothesis, for some V’,
e / /
L M'[K/& = V' and V'rC,
2. M'[K /7] &, C'lthrow v V'] and V' r € for some C" which does not capture v, or

3. M'[K /] e C'[throw u; V'], V' r B; and u; # v, for some j and €’ which does not

capture u;.

In the first case,

(catch v M")[K/Z] = catchv M'[K/T] — catchv V' — V'
Therefore the first condition of Definition 2.3.2 is satisfied. In the second case, since ¢’ does not
capture v,
(catchv M')[K/Z] = catchv M'[K /]
—— catch v C'[throw v V']
= or — catchv (throw v V')
= V7.

That is, the first condition is satisfied also in this case. In the last case, let C be as C = catch v
c'.
(catch v M')[K/#] = catchv M'[K/Z

—~- catch v C'[throw u; V]

CBV

= ([throw u; V'].
Since u; # v, C does not capture u;. Therefore the second condition of Definition 2.3.2 is satisfied
in this case. We now get I' F catch v M’ ; A.
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Case 5: The last rule is (D-1). Let TU{z:C1} F M':Cs; {} be the premise, where M = XA z. M’
and C' = C; D Cy. Let 2/ be a fresh individual variable.

(Az. MK /& = A2 M[Z'/2][K ] & € Val.
Assume that W r €. By the induction hypothesis,
M (K /&)W = MW/Z[K/&] &= V' and V'rCs.
That is, (A z. M")[K /Z] v C1 D Cs.
Case 6: The last rule is (D-F). Let T+ M;:DDC; A and T'F Ms:D; A be the premises,
where M = M; M>. By the induction hypothesis on the first premise, for some Vi,
L Mi[K/#] = Viand Vix DDC, or

2. Mi[K /7 e C'[throw u; V1] and Vi r B; for some j (1 < j < n) and ¢’ which does not

capture u;.
In the first case, since V; r D D C, we can assume that V; = A z. N for some z and N. Therefore,
(My Ms)[K/Z] = Mi[K/Z] Ms[K /7] ﬁ (Az. N) My[K /%]
On the other hand, by induction hypothesis on the second premise, for some V5,
Mz[lz’/f] > Vo and VerC, or
CBV

M;[K /7] e C"[throw u; V5] and Var B;

for some j (1 < j < n) and C"” which does not capture w;. Therefore, (M Mz)[lz’/f] =

CBV

(Az.N) Vo — N[Va/z] or (My Ms)[K /%] == (Az.N)C[throw u; Vo). Since Az. N r DDC

CBV CBV
and Vo r D, one of the two conditions of Definition 2.3.2 1s satisfied. In the second case, let C be

as C = C' M, [K /1.
(My M2)[K /%] == C'[throw u; Vi] Ms[K/Z] = C[throw u; Vi]

Since C does not capture u;, the second condition of Definition 2.3.2 is satisfied in this case.

Therefore, I' E My M5 ; A holds.

Case T: The last rule is (<-1). Let T+ M’ :Cy; AU{v:Cy} be the premise, where M = kv. M’
and C = Cl <102.
(kv. MK /Z] = kv. M'[K /1]

By the induction hypothesis, for some V',
e / /
L M'[K/& = V'and V'rCy,
2. M'[K /7] o=, C'lthrow v V'] and V' r C; for some €’ which does not capture v, or

3. M'[K /7] &, C'lthrow u; V'], V' x B; and u; # v, for some j and €' which does not
capture u;.
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In the first case,
(ko.M)[K/E] = wv.M[K/T] = kv.V’,
and since V' r C1, we get kv. V' r C; < Cy. Therefore, the first condition of Definition 2.3.2 is

satisfied. In the second case,

(kv. M)[K/Z] = kv M'[K/T]
— &v.C'[throw v V']
= or oz kv.throwv V"

Since V' r Cy, we get kv.throw v V/ r C; «C5. That is, the first condition is satisfied also in
this case. In the third case, let C be as C = kv. (.

(kv. MN[K/Z] = kv M'[K/Z]
— kv.C'[throw u; V']

= (C[throw u; V'].

Since u; # v, € does not capture u;. Therefore the second condition is satisfied. We now get
F'Exv. M :CiaCy; A.

Case 8: The last rule is («-F). Let T = M':C < By ; A’ be the premise, where M = M’ u;, and
A=A"U {uk Bk}
(M’ up)[K /%] = M'[K]Z] u.

By the induction hypothesis, for some V',
1. M'[K /7] o, kv. V' and V' r C for some v,
2. M'[K /7] o, kv.throwv V' and V' r By, for some v, or

3. M'[K /] e C'[throw u; V'] and V' r B; for some j (1 < j < n) and €’ which does not
capture u;.
In the first case,
(M wp)[K /&) = M'[K /@] g == (k0. V) up =2 V'
That is, the first condition of Definition 2.3.2 is satisfied in this case. In the second case,
(M’ up)[K 8] = M'[K ) Z) ug — (kv.throw v V') uy — throw u; V'
Since V' r By, the second condition is satisfied. In the third case, Let C be as C = C’ uy,.
(M’ wp)[R /&) = M'[K /%) up = C'[throw u; V'] uy = C[throw u; V']
Since C does not capture u;, the second condition is satisfied in this case. We now get I' F

M ug:C; A.

Case 10: The last rule is one of the others. We get I'F M : C'; A similarly. [

Corollary 2.3.5 If {}F M :C; {} is derivable in Lfﬁv, then M =V for some value V.

Proof. Straightforward from Theorem 2.3.4. ]



Chapter 3
The conventional implementation

In this section we imitate the standard implementation of the catch/throw mechanism by an
abstract stack machine, and give a realizability interpretation of the formal system in terms of
the abstract machine which is equivalent to the realizability defined in Section 2.3.

3.1 Definition of the machine

We design the machine only to illustrate how the catch/throw mechanism works. Other mech-
anisms required for the evaluation of terms remain abstract (cf. [17, 30]). First, we extend the

syntax. The extended part 1s used by the machine internally.

Definition 3.1.1 (Tag constants) We assume that a set Tconst which is a representation of
the set of natural numbers is given. Elements of Tconst are called tag constants. We use 7 to

denote the tag constant that represents a natural number n.
Definition 3.1.2 (Tag*) We define a set Tag™ by
Tagt ::= Teonst | Tvar.
Elements of Tag* are called internal tags. We use ¢,t’, ... to denote internal tags.

Definition 3.1.3 (Val* and Term*) We define two sets Val* and Term®, simultaneously, as
follows.
Val* ::= Const | AVar.Term* | <Val*, Val*>
| injq Val* | injo Valt

| kTvar.val Valt | & Tvar.throw Tvar (val Val*)

Term* ::= Const | Var | wvalVal* | let Var=Term*. Term*
| throw Tag* Term* | catch Tvar Term*
| AVar.Term* | Term* Term*
| <Term*, Term*> | projyTerm*t | projoTerm*
injq Term® injo Term®* case Term™ Var. Term* Var.Term*
1 2
|

k Tvar. Term* | Term* Tag™* |
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where every element of Val* must be closed and must not have any occurrence of tag constants.
Elements of Valt are called internal values. We use ), R, .. .to denote internal values. Elements
of Term™ are called internal terms. We use e, f, g,...to denote internal terms. Note that if Az. e
is an internal value, then F'IV(e) C {#} and FTV(e) = {} since every internal value must be

closed.
Proposition 3.1.4 Val* C Term* and Term C Term™.
Proof. Obvious from the definition. [

We now have new terms such as val (Az.¢), throw 3 ¢ and €0, as internal terms as well as

ordinary terms.

Definition 3.1.5 Let e be an internal term which does not have any occurrence of tag constants.

We assign a term € to e as follows.

c = ¢ T = «x
vale = ¢ let z=¢;. ¢ = letz=¢;. e
throwue = throwue catchue = catchue
Az.e = Azx.e €163 = €€y
<ey, e3> = <€, e3> proj,e = proj;e
inj,e = inj,€ case e) T.€] Y.62 = caseeyx.€y Yy.€s
Ku.e KUu.e eu = eu

That is, € 1s the term obtained from e by stripping all val’s occurring in e.

Proposition 3.1.6 Let e be a closed internal term. If e has no occurrence of tag constants, then

€ 15 a closed term.
Proof. Straightforward induction on the structure of e. [
Proposition 3.1.7 Q € Val for any internal value Q.

Proof. Straightforward induction on the structure of @. Note that any internal value has no

occurrence of tag constants. [J

Proposition 3.1.8 Let M be a term, x1,...,x, individual variables, and Q1,...,Qy, internal

values.

M[Val Q1/$1a .. .,val Qn/xn] = M[§1/$1a .. a@n/xn]
Proof. Straightforward induction on the structure of M.

Definition 3.1.9 (Seg) We define a set Seg by

Seg ::= let Var=x. Term* | throw Tagt* | catch Tvar *

xTerm®™ | Val* x

|

| <*, Term*> | <Val* x> | proji* | projg*

| injy* | injox | casex Var.Term* Var. Term*
|

kTvar.x | kTvar.throw Tvar x | *Tag*

where &k Tvar. throw Tvar * must be closed, that is, the two tag variables are identical. Elements

of Seg are called contert segments. We use S, &, ... to denote context segments.
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The abstract machine has a stack. The state of the machine is determined only by this stack
state. We represent a stack state as follows.

bottom «— — top
[Sla SZa S3a sy Sna 6],
where &7, ..., &, are context segments and e is a closed internal term.
Definition 3.1.10 A stack state [ S1, S, 83, ..., Sn, €] is valid if &;...S, are context

segments and e is a closed internal term.

Definition 3.1.11 (Transition rules) The abstract machine changes its state according to the
following table, where & denotes a sequence of context segments.

[S ¢] = [§ val(
[S, let x=e¢;. 62] = [8, letx=x. ey, 1]
[S let z=x%. ey, vale;] = [, eo[valey/a]]
[S, throwie] = [8, throwt+, €]
[S1, or ) Sy Snits or ey Snpms
throw 7 *, val e S, ..., Sy, vale]
[S1, ..., Sy, catchue S, oo, S, e[m/u]]
[S Az.e , val (Az.e)]
[S €1 e , k€9, € ]
[S xeq, val ey , €1%, €]

[S, , (Ax.e)*, val eq ei[val e /2] ]

[5 <€y, €3> <k, 9>, ey ]

[S <k, eg>, val ey <er, *¥>, €3]

[S <ey, *>, val ey val <eq, es> ]

[S proji e , Proji *, €]
, valeq ]
[S projs e , Projo*, €|
[S projo*, val <ej, es> , val ey ]
[S injq e , injq*, €]

—

[S, injq*, vale val (injq e) ]

[S injog e injo *, €]

—

[S, injox*, val e val (injo e) |

case * x.ej y.es, €q |

[S case eg r.e| y.e

19 Ly Yy &y 9y &y 9y 9 9y 9 U 9y G 9y 9 Oy &

[S case * 2.y y.eq, val (injq eo er[val eg/x] ]

ea[val eg/y] ]

1, ooy, Sy, Ku.throw u *,

L T . U N (2

— — — — — — — — — — — — — — — — — — — —

2
)
[S case * r.ej y.es, val (1n32 eo)
e

[Sla"'a n

“w O

]
]
]
]
]
]
]
]
]
]
[S projq *, val <ej, es>]
]
]
]
]
]
]
]
]
]
]

throw  *, ku.*, e[n+1/u]]
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[S, ku.*, vale] , val (ku.vale)]
val (k u. throw u (val €)) ]
x1, e]

e[t/u]]

[S, ku.throw u *, val ¢]
(S et]
[S, «t, val (ku.e)]

U
P‘lal'f:—n‘lal

Let & be the transitive and reflexive closure of the relation =.

Example 3.1.12

[ (catch u ((Az.e) (throw u (Az.x))))c]

= [#e¢, catch u ((Az. e)_(throw u(Az.z)))]
= [#*¢, (Az.e) (th_row 1 (Az.z))]
= [#e¢, #(throw 1 (Az.2)), Az.e]
= [#¢, *(throw 1 (Az.z)), val (Az.e)]
= [*¢, (Az.e)*, throw 1 (Az.z)]

= [*c, (Az.e)*, throw 1 x, Az 2]

= [*c, (Az.e)*, throw 1 %, val (A z.z) ]
= [*c val (Az.x)]
= [(Az.z)*, c]
= [(Az.z)*, valc]
= |

val ¢ ]

Note that when the stack is in a state [ 81, S, ..., Su—1, Sa, €], the composition & [Ss]. ..
[S,.—1[Sn]] - - ]] of the context segments represents the evaluation contexts of the internal term
e, i.e., the continuation after the evaluation of e. The catch/throw mechanism of the machine
provides a restricted access to the continuation through tags. Observe that we need not any

explicit copying of evaluation contexts to provide the mechanism.

Proposition 3.1.13 Let [ Sy, ..., Sy, e] be a valid stack state. If
[Sla RS Sma 6]2[81, ) Sr/w el]a
then [S], ..., S/, €] is also valid.

Proof. Obvious from the definition of transition rules. Note that e is closed since the state is
valid. J

Definition 3.1.14 Let S and S’ be sequences of context segments, and let e and e’ be internal
terms. [ &, ¢ ]is a final state of [ S, e |, if [ S, e] = [ &, ¢ ] and no transition rule is

e
applicable to [ &', €' ].

The rule applicable for a state is unique by the definition of the transition rules. Therefore, if

[e] = [val Q], the internal value @ is unique.

3.2 Validity of the machine

In this subsection we discuss the validity of the abstract machine relative to the semantics given
in Section 2.1.2. We show that
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LM =V implies [ M ] = [ val Q ] for some @ such that @ = V', and
2. [M]2 [val Q] implies M e Q.
for any closed term M.

Definition 3.2.1 Let e and ¢’ be internal terms, and let S, ..., S, and S7, ..., S/, be sequences
of context segments. Let [ be a natural number. We define a relation = by

[S1, ..., Sm,e] =[S, ..., 8, ¢,
[Sy, ...,Sm,e]:l>[81, LS [<m,n, and
§ =8 (1<i<.

Let :T> be the transitive and reflexive closure of the relation =

The relation = 1s equivalent to =, and = implies = if m < n. Note that if [S1, ..., Sm, €] =
[S7, ..., 8], €], then this transition does not depend on &y, ..., &;.

Definition 3.2.2 Let M be a term such that M it N for some N. The rewriting path from
M to N is unique. We denote the length of the path by len(M).

Definition 3.2.3 Let M be a term. We define | M| by

ol = Ja] = 1
let e=M.N| = 1+ mazx(|M|,|N]|)

[throw u M| = |catchu M| = |Az. M| = 1+ |M]
[MN| = |<M, N>| = 1+ maz(|M|, |N]|)

proj, M| = finj, M| = 1+ |M|

|case L .M y.N|

14+ maz(|L],|M],|N]|)

ke M| = |[Mu| = 14+ |M]|.
Theorem 3.2.4 Let S be a sequence of context segments whose lengths 1s . Let x1,..., 2,
be individual variables, and Ry,..., R, internal values. Let uy,...,u, be tag variables, and

ki,... kn tag constants such that k; < | for any i. Let M be a term sgch that FIV(M) C
{e1,... 2} and FTV(M) C {u,...,un}. Let M[R/Z] and M[val B/Z, k/) be abbreviations
for M[Ry/x1, ..., Rpn/xm] and M[val Ry/xy, ..., val Ry /e, ki/ui,. .. kn/uy], respectively.

1 If M[R[#] &= V, then
(S, Mval B/ F/@]] 5 [ S, val Q],
for some internal value Q such that Q = V.
2. IfM[R?/i"] e Clthrow u; V] for some j and C which does not capture u;, then
(S, MvalB/7,k/i]] = [§, &, throw F; *, val Q],
for some sequence of context segments S and some internal value Q such that Q = V.

Proof. Induction on the lexicographic ordering of len(M[E/i"]) and |M[§/i"]|
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Case 1: M is an individual constant. In this case M[E/f] = M. Therefore, we get V = M if
M[R/7 &, V. By the definition of transition rules,

(S, MvalB/7,k/a)] =[S, M] =[S, val M ].

Let @ be as @ = M. Then we get Q = V since M is an individual constant. Note that
M[R/7] 3 Clthrow u; V].

Case 2: M is an individual variable. We get MLE/ ¥l = M or M[E/f] = R; for some i. Therefore
R/x >é— Clthrow u; V]. Suppose that M[R/7 o, Viie, M =z and R; &, V. Since R;
is a value, we get R; = V. Let Q be as Q = R;. ObVlously [ S, M[valR/Z, k/u] ] l [S, val R; |

since M[val R/Z, k/u] =val R;.

Case 3: M = let y=M;. Ms for some y, My and M,. We can assume y # z; for any 1.
First, suppose that M[E/f] &, V. By the definition of rewriting rules, M; [_E/f] oo
and M>[R/Z][V1/y] o,V for some value V3. Note that len(M1[R/Z]), len(M2[R/Z][V1/y]) <
len(M[E/i"]) Therefore for some internal values @ and @ such that @, = V; and Q =V,

(S, (let y=M,. My)[val R/, /@]

]
§, let y=+. Ms[val B/Z, k/a], Mi[val B/, k/d]]

= | E

:>:> [S, let y=+. My[val B/Z, /;/u] val Q1 ] (by ind. hyp.)
S 18, Malval /5, val @1y, /]

:>:> [S, val Q] (by ind. hyp.).

Next suppose that M[R?/i"] o=, Clthrow u; V]. By the definition of rewriting rules,
1. My [E/f] &, C'[throw u; V] and € =let y=C'. M, for some C’, or
2. My [E/f] & Vi and Mz[ﬁ/f][vl/x] &=, Clthrow u; V] for some value V}.

In the first case, len(M; [E/f]) = len(M[E/i"]) and |M1[§/f]| < |M[§/i"]| Therefore by the
induction hypothesis, for some S’ and Q such that Q =V,

(S, (let y=M,. My)[val R/Z, k/a] ]
= [S, let y=+x. Mz[valﬁ/f,g/
:T> [ S, let y=+. My[val R/, k/

[l

d), Mi[val B/7,k/i |
], g’, throw k; *, val Q ].

In the second case, len(M; [R?/i"]) len(Mz[E/ﬂ[Vl/x]) < len(M[E/gj]) Therefore, for some &,
@1 and Q such that @, = V; and Q =V,

(S, (let y=M,. My)[val B/, /)]

S, let y=+. Ms[val B/, k/d), Mi[val B/ %, k/d] ]

S, let y=+. Mz[valR/x k/u] val Q1 ] (by ind. hyp.)
S, Ms[val R/Z, val Q /y, k/d]]

S, &, throw k; *, val Q] (by ind. hyp.).

l| wll

el el
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=

Case 4: M = throw v M’ for some v and M’. Since M[R/Z] C%-V V', suppose that M e
Clthrow u; V]. By the definition of rewriting rules,

1. M’[R?/i"] &, C'[throw u; V] and € = throw v ¢’ for some C’, or
2. M’[R?/i"] &, Vand v =u;.

In the first case, len(M’[R?/f]) = len(M[R?/i"]) and |M’[§/f]| < |M[§/f]| Therefore by the
induction hypothesis, for some S and Q such that Q =V,
[S, (throva’)[valﬁ/f,?/ﬁ]] = |8, throw v[?
= [{, throw v[ﬁ/ﬁ] x, M'[valR/ &, k/d] ]
:>:> [ S, throw v[k

Similarly in the second case, for some @ such that Q@ =V,

=

[S, (throw v M")[val R/Z,k/d@]] = [S, throw k; M’'[val R/%, /)]
[ S, throw k; *, M'[val R/, k/i] ]

7
:t> [g, throw k; *, val Q ],

by the induction hypothesis.

Case 5: M = catch v M’ for some v and M’. We can assume that v # wu; for any i. First,
suppose that M[ﬁ/f] e V. By the definition of rewriting rules,

’ =
1. M'[R/Z] o, Vior
2. M’[R?/i"] e C'[throw v V] for some €' which does not capture v.

In the first case, since len(M’[E/f]) < len(M[R?/i"]), by the induction hypothesis, for some Q
such that Q =V,

[S, (catch v M))[val R/Z,k/@]] = [, catch v M’[val R/Z,k/d]]
= [8 M'Ival B/# k/d,1/v]]
:T> [S, val @ ].

Similarly in the second case, since len(M’[E/i"]) < len(M[E/f]),

[S, (catch v M')[val B/, k/] ]

S, M'[valR/Z k|, 1/v]

§, g’, throw [ *, val Q
, val Q ]

S, catch v M’[valﬁ/f,?/ﬂ']]
]
]

SR

for some &' and @ such that Q=V.
Next suppose that M[R/Z] o, Clthrow w; V]. Since C[throw u; V] is not a value,
M'[R] % e C'[throw u; V] and ¢ = catch v ¢’ for some C’. Since len(M'[R]]) =
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len(M[R/7) and |M'[R/7]| < |M[R/ 7],

[S, (catch v M))[val B/Z, /@] = [&, catchv M'[val R/Z,k/d]]
:f [{, catch v *, ]\g’[valR/flk/ﬁ,l/v]]
= [S, catch v *, &, throw k; %, val Q]

for some & and Q such that @ =V by the induction hypothesis.

Case 6: M = kv. M’ for some v and M’. We can assume that v # u; for any . First, suppose

that M[E/f] &, V. By the definition of rewriting rules, for some v/,
1. M’[R?/i"] e V'and V = kv. V' or

2. M’[R?/i"] o, C'[throw v V'] and V' = k v. throw v V” for some €’ which does not capture

v.

= =

In the first case, len(M’[R?/f]) = len(M[R?/i"]) and |M'[R/Z]| < |M[R/Z]|. Therefore by the
induction hypothesis, for some @’ such that @l =V,

(S, (kv. M))[val B/Z, £/d] ]
kv. M'[val R/#, k/i] ]
kv.throw v *, throw [ %, kv.x, M'[val R/Z, k/@,l1+1/v]]

kv.throw v *, throw [ x, kv.*, val Q]

=l -l

kv.throw v *, throw [ %, val (kv.val Q') ]

§, val (kv.val Q') ].

Let @ be as Q = wxv.val @', Then we get Q = K?_U.al = kv.V' = V. In the second case,
len(M'[R/]) < len(M[R/Z]) and |[M'[R/Z]| < |M[R/Z]|. Therefore,

(S (kv. M) [val B/, k/@] ]

= [S, kv.throw v x, throw [ , kv.*, M'[val B/ k/@,1+1/v]]
:T> [S:, kv.throw v *, throw [ *, kv.*, S_;’, throw [+1 , val Q']
= [ﬁ, kv.throw v x, val Q']

= [S, val (kv.throw v (val Q') ]

for some & and Q' such that @l = V' by the induction hypothesis. Let () be as Q@ = kv. throw v
(val Q"), Then we get Q@ = kv. throw v @l = kv.throwov V' = V.

Next suppose that M[E/f]_ e Clthrow u; V]. By the definition of rewriting rules, there
exists some €’ such that M'[R/¥] = C'[throw u; V] and € = kv.C’". Note that ' does not
capture u;. Since len(M'[R/%]) = len(M[R/%]) and |M'[R/Z]| < |M[R/#]|,

(S, (kv. M))[val B/Z, £/d] ]
= [S, kv.throw v +, throw [ , kv.*, M'[val B/Z k/@,1+1/v]]
:>:> [g, kv.throw v *, throw [ *, kv.*, 8_7’, throw k; *, val Q |

for some S” and Q such that Q@ = V by the induction hypothesis.
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Case T: M = M'v for some M’ and v. First, suppose that M[ﬁ/f] e V. By the definition
of rewriting rules, for some w,

' =
M'[R/Z) o, kw V.
Since len(M’[ﬁ/i"]) < len(M[é/f]), by the induction hypothesis, for some @ such that Q =V,

(S, (M'v)[val R/Z,k/d] ]

=4 ==

S, M'Ival B/, K/ o[/ ]
S, «ulk/@), M'[val B/, k/7]]

S, «v[k/@, val (kw.val Q)]

S, (val Q)[v[k/@]/w]]

, val Q .

Next suppose that M[E/i"] o=, Clthrow u; V]. By the definition of rewriting rules,
1. M’[R?/i"] e C'[throw u; V] and ¢ = C'v for some C’, or

2. M’[R?/i"] o, kw.throw w V for some w and v = u;.

In the first case, len(M’[R?/f]) = len(M[E/f]) and |M'[R / 7| < |M[R/i"]| Therefore,

for some & and Q such that @ = V by the induction hypothesis. Similarly in the second case,

=3

[S, (M'v)[val /% k/il] ]

4~ -4l

S M'[val B/Z, £/ F; ]

s:, «k;, M'[val B/% k/il] ]

{, *k;, val (kw. throw w (val Q)) ]
S, throw k; (val Q) ]

S, throw ki *, val Q].

Case 8: M = Ay. M' for somey and M'. Since M[E/f] Ay (M ’[R?/_’]), we get M[E/f] C%-V
Clthrow u; V]. Suppose that M[F/7] o, Ve, V= Ay. (M'[R/¥]). Since FTV(Ay.M') =
{1, we get (A\y. M")[val R/Z k/d] = Ay.(M’[val £/]). Therefore, [ S, M[val B/ k/d] ] =
[g, val Q ], where Q = A y. (M’[valé/i"]), and Q = Ay. (M’[E/f]) by Proposition 3.1.8.

Case 9: M has one of other forms. Similar. [

Lemma 3. 2 5 Let S be a sequence of context segments whose length isl, and let e be an internal
term. If [S, e] = [S S, e’ ] for some S" and €', then for any tag constant M occurring in S'
ore’, m< l implzes that m occurs n e.

—

Proof. By induction on the length of the path of | g, e ] :T> [ S, g’, ¢’ ]. Each step is obvious
from the definition of transition rules. []
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Lemma 3.2.6 Let S be a sequence of context segments whose length is |. Let uy, ..., u, be
tag variables, and ki,... k, tag constants. Let M be a term such that FIV(M) = {} and
FTV(M) C{uy,...,un}. If

[S, M[ky/uy, ... kn/us] ] S [ 8, €]

for some 8’ and e, then

118 MFfur, - Fufu]] 5[ ],

2.8, M[El/ul,...,zn/un]]:} [S val Q] for some Q, or

3. [S, Mlky/uy, ... Fn/un) 15 [S, ..., throw k; *, val Q] and k; < I for some Q and j.
Proof. Assume that [ S, M[ky/uy, ... kn/un] ] % [ &, ¢ ], and let [ ", ¢ ] be the fi-

nal state of [ &, M[ky/uy, ... kn/un] ] wort. =, which is not a final state w.r.t. = since

[S, M[k1/uy, ... kn/us]] 3 [ &, e]. Therefore, a transition rule is applicable to the state. By
the definition of transition rules,

1. [8_7’, e]l= [g, val Q] for some Q, or

2. [8_7’, e [g, ..., throw m , val Q ] for some Q and m such that m < [.

We get m = k; for some j by Lemma 3.2.5 in the latter case. ]

Lemma 3.2.7 Let S and S’ be sequences of context segments whose lengths are l and m, respec-

tively. Let uq, ..., u, be tag variables, and k1, ... ky, tag constants. Let M be a term such that
FIVIM)={} and FTV(M) C {uy,...,un}. If

[ga ‘§/a M[El/ulaazn/un]]g[ga ValQ]

for some Q, then

—

1. [S8, S, M[El/ul,...,zn/un]]l% [g, S, val Q'] for some Q', or

2. 18, 8, M[El/ul,...,zn/un]]l% (S, 8, ..., throw k; *, val Q' ] and | < kj <+ m
for some Q' and j.

Proof. Suppose that [g, S, Mk /uy, ...k fun] ] [g, val Q]. By Lemma 3.2.6,

L. [ga ‘§/a M[El/ulaazn/un]] :*> [S_: ValQ]a

I+m

—

2. [S8, S, M[El/ul,...,zn/un]]l% [g, S, val Q' ] for some @', or

3. [g, g’, Mk uy, ... kn/ug] ] l%} [g, g’, ..., throw k; *, val Q' ] and k; < [+ m for
some Q' and j.
In the first case, we get m = 0 by the definition of l%. Therefore, [g, val Q] = [g, S, val Q ].

Trivial in the second case. In the third case, it is enough to show that { < k;. Since [g, val Q]
is a final state w.r.t. =, we get that [g, S’ ..., throw kj *, val Q' ] is not a final state w.r.t.
= Therefore we get | < k;. O
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Lemma 3.2.8 Let S be a sequence of context segments whose length is |. Let uy, ..., u, be
tag variables, and ki,... k, tag constants. Let M be a term such that FIV(M) = {} and
FTV(M) C {uy,...,un}. If [g, Mlki/ug, ..k u] ] = [5_7’ throw 7 x, val Q] for some
g’, Q and q such that ¢ <1, then

1. [S, M[El/ul,...,zn/un]]:} [S val Q'] for some Q', or
2. [S, Mlky/u1, ... Fn/ua] 12 [S, ..., throw 7+, val Q].

Proof. Suppose that [g, Mlki/ug, .. ko fus] ] 3 [g’, throw 7 %, val Q ] and ¢ < [. By
Lemma 3.2.6,

L[S, Mlky/u, ... knfun) ] 2 [ S, throw 7+, val Q ],
2. 8, M[El/ul,...,zn/un]]:} [S, val Q'] for some @', or
3. [g, M[El/ul,...,zn/un]]:} [g, ..., throw k; *, val Q' ] and k; < [ for some Q' and j.

In the first case, let m be the length of S'. Trivial if { < m. Otherwise we get [5_7’ throw 7
x val Q] = | S, val Q ] from the definition of =. Trivial in the the second case. In the
third case, since k; < [, [ S, ..., throw kj *, val Q' ]is a final state w.r.t. = as well as

[g,..., throw g #, val Q ]. Therefore, k; = ¢ and Q' = Q. O

Theorem 3.2.9 Let S be a sequence of context segments whose lengths 1s . Let x1,..., 2,
be individual variables, and Ry,..., R, internal values. Let uy,...,u, be tag variables, and
ki,..., ky tag constants such that k; < l for any i. Let M be a term such that FIV(M) C
{e1,...,2m} and FTV(M) C {uy,...,un}. Let MI[R/#] and M[val R/, k/7] be abbreviations
for M[Ri/x1,...,Ryn/xm] and Mval Ri/x1,...,val Ry /e, ki/us, ... kn/u,], respectively.
Let Q be an internal value.

1 If [§, Mval /&, k/i]] 5 [ &, val Q ], then

M[R/Z] o @ or M[R/Z] e Clthrow u; Q]
for some j and C such that k; =1 and C does not capture u;.

2. If [5_: M[valﬁ/f,?/ﬁ] ] :T> [g, ..., throw 7 x, val Q] for some q such that ¢ < I, then

M[R/&] e Clthrow u; Q]
for some j and C such that ¢ = k; and C does not capture u;.

Proof. By induction on the lengths of the following transition paths.

(S, M[val B/ k/d]] = [S, val Q] (3.1)
(S, Mval B/Z,F/@]] 2 [&, ..., throwg+, val Q] (3.2)

By cases according to the form of M.
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Case 1: M is an individual constant. Trivial since [ S, M[val é/f,?/ﬁ] 1=[8 M]=
[S val M ]and M = M =M.

CBV
Case 2: M 1is an individual variable. Suppose that

1S, Mlval B/Z,F/d ]2 [S, ..., val Q].

Since M = ; for some i, we get M[val B/Z, ?/U] = val R;. That is, [ S, M[val B/Z, ?/U] ] is
a final state w.r.t. =. Therefore (3.2) does not hold. Suppose that (3.1) holds. In this case,

Q = R;. Therefore, M[E/f] =R; e R =Q.

Case 3: M = let y=M,. M, for some y, My and M;. We can assume that y # a; for any 1.
Let Siy1 be as Siyy = let y=+. My[val B/Z, k/@]. By the definition of transition rules,

(S, (let y=M,. My)[val B/Z, k/d] ]
= [8, let y=M[val B/Z k/id]. Ms[val R/ %, k/i] ]
:l> [ga Sl-l-la Ml[valé/fa _’/ﬁ]]

First, suppose (3.1), i.e., [g, Siy1, Ml[valﬁ/f, ?/U] ] :T> [g, val @ ]. By Lemma 3.2.7,

L[S, Sy, Ml[valﬁ/f,?/ﬁ]] =[S, Sip1, val Q'] for some @', or

11
2. [S, Sipq, Ml[valﬁ/f,?/ﬁ] ] l+:*>1 [S, Siy1, ..., throw &; *, val Q'] and k; = [ for some
Q' and 1.

In the first case, since k; < {41 for any j, we get M, [E/f] e @l by the induction hypothesis.
On the other hand,

(S, MvalB/Z k/i]] =[S, Sy, Milval B/7, k/id]]
l+=*>1 [S, Siy1, val Q']
= [, Mo[val B/, val Q' [y, k/i] ].

Therefore, we get [g, Ms[val ]%/f, val Q’/y,?/ﬂ'] ] :t> [g, val @ | by (3.1). By the induction

hypothesis again, we get MZ[R?/J_;, Q//y] e Q or MZ[R?/J_;, Q//y]
and C such that k; = { and C does not capture u;. That is,

e Clthrow u; Q] for some j
MIR/F] = let y=M[R/7). Mo[R/7]
= let y=Q . MR/
M[R/E,Q 1]
Q or Clthrow u; Q).

In the second case,

(S, MvalB/Z,k/@)] = [&, Sy, Mi[val B/ F/i]]
l+2*>1 [g, Siy1, ..., throw [ x, val Q']
= [ _’, val Q' ].
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Since [g, val Q'] is a final state w.r.t =, we get Q" = Q from (3.1). That is,

(S Sip1, MijvalR/Z k@] 2 [ S, Sip1, ..., throw %, val Q1.

141

By the induction hypothesis, we get M [E/f] e C'[throw u; Q] for some j and €’ such that
l = k; and C’' does not capture u;. Therefore,

MIR/#] = lety=M[R/7]. Mu[R/5]
—  let y=C'[throw u; Q]. M, [R/ 7
= C[throw u; Q],

where € = let y=C’". M> [R?/i"], which does not capture u;.
Next suppose that ¢ < ! and (3.2), i.e.,

[ga M[Valﬁ/fak/m] :l> [S:a Sl-l-la Ml["alﬁ/fak/ﬁ”
:T> [S, ..., throwgx, val Q ].

By Lemma 3.2.8,

L[S, Sy, Ml[valﬁ/f,?/ﬁ]] =[S, Sip1, val Q'] for some @', or

141

2. [8 Sip1, Mi[val B/%,k/@]] = [ S, Sip1, ..., throw 7+, val Q ].

141

In the first case, since k; < {41 for any j, we get M, [E/f] e @l by the induction hypothesis.
On the other hand,

(S, Mval B/E.k/d]] 2 [, Sir, val Q']

1

= [8, Mo[val B/, val Q'/y, k/i] ].

Therefore, | g, Ms[val ﬁ/f, val Q’/y,?/ﬂ'] ] :T> [ §, ..., throw 7 %, val @ | by (3.2). By
the induction hypothesis, we get Mz[ﬁ/f, Q/y] e C[throw u; Q] for some j and C such that

q¢ = k; and C does not capture u;. Therefore,

MIR/Z] = lety=M[R/7). Ms[R/7)
= lety=Q . Ms[R/7]
— M[R/7.Q/y)

Clthrow u; Q).

CBV

In the second case, we get M, [R/] e C'[throw u; Q] for some j and C’ such that ¢ = k; and
C’ does not capture u;, by the induction hypothesis. Therefore,

MIB/?) = lety=M[R/7. Mo[R/7]
&, let y=C'[throw u; Ql. Ms[R/ 7]
= (C[throw u; Q],

where € = let y=C’". M> [R?/i"], which does not capture u;.
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Case 4: M = throw v M’ for some v and M’. Since FTV(M) C {u1,...,un}, we get v = u,
for some p. Let ;41 be as §41 = throw Ep *. By the definition of transition rules,

(S, (throw v M')[val R/7,k/@]] = [S, throwF, M'[val B/, k/i]]
=[S, Sip1, M'[val B/Z, k/il] ).

First, suppose (3.1), i.e., [g, Siy1, M’[valé/f, ?/U] ] :>:> [g, val Q]. By Lemma 3.2.7,

L[S, Sy, M’[valﬁ/f,?/ﬁ] ] l+:*>1 [S Siy1, val Q'] for some @', or
2. [8, Sip1, M’[valﬁ/f,?/ﬁ] ] l+:*>1 [S, Sip1, ..., throw k; *, val Q' ] and k; = [ for some
Q' and 1.

In the first case, since k; < {41 for any j, we get M’[R?/i"] e @l by the induction hypothesis.
Therefore,

M[E/f] = throw u, M’[ﬁ/f] e throw u, Q/.

On the other hand, [g, Siy1, val Q'] :T> [g, val @ ] by (3.1). Therefore, we get k, = [ and
Q = @'. In the second case, since k; = I,

|8, Mlval /&, k/a] ] (S, Suyr, M[val RB/7, /]

=
1 _) _
l+:*>1 S, Sit1, ..., throw [ x, val Q']
= [§ valQ'].
Therefore, Q' = Q by (3.1), i.e.,
(S, Sipr, M'[val R/Z,k/d] ] 518, Siyr, o, throw [+, val Q1.

By the induction hypothesis, we get M’[R?/i"] e C'[throw u; Q] for some j and €’ such that
l = k; and C’' does not capture u;. Therefore,

M[R/@] = throw u, M'[R/7]
- throwu, C’[_throw uj Q]
= C([throw u; @],

where C = throw u, C’, which does not capture u;.
Next suppose that ¢ < ! and (3.2), i.e.,

Sy, M'[val B/ %, k/a] ]
..., throw g%, val Q].

(S Ml Bz Fja] < (8
= IS
13

By Lemma 3.2.8,

1. [8, Sy, M’[valﬁ/f,?/ﬁ] 13 [8, Sip1, val Q'] for some @', or

141

2. (8 Sip1, M'val R)Z, %/ ] =[S, Sigi, ..., throw 7+, val Q.

141
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In the first case, since k; < {41 for any j, we get M’[R?/i"] e @l by the induction hypothesis.
Therefore,

= B = —
M[R/Z] = throw u, M'[R/Z] &, throwu, Q.
On the other hand, [g, Siy1, val Q'] :T> [g, ..., throw 7 %, val @ ] by (3.2). Therefore we

get ¢ = kp and Q' = Q. In the second case, we get M’[R?/i"] e C'[throw u; Q] for some j and
¢’ such that ¢ = k; and ¢’ does not capture u;, by the induction hypothesis. Therefore,

M[R/Z] = throw u, M'[R/7]
/ a)
&, throwu, C [throw u; Q]

Clthrow vu; Q],

where C = throw u, C’, which does not capture u;.

Case 5: M = catch v M’ for some v and M’'. We can assume that v # u; for any 7. By the

definition of transition rules,

[S, (catch v M))[val R/Z,k/@]] = [, catch v M’[val R/Z,k/d]]
= [& M'[valR/Z k/a@, 1/v]].
1

= —

First, suppose (3.1), i.e., [g, M’[valé/f, Ji, /] ] :>:> [g, val @ ]. By the induction hypothesis,
np O
L WIEE s O
2. M'[R/Z] e C'[throw u; Q] and k; = for some j and C’ which does not capture u;, or

3. M’[R?/i"] o, C'[throw v Q] for some €’ which does not capture v.

In the first case,

M[R/Z] % catchv@ = Q.

CBV

In the second case,

M[E/i"] &, catchv C'[throw u; Q] = C[throw u; Q],

where C = catch v €', which does not capture u;. In the third case,

M[R/Z] = catchv('[throwv Q] —= catchv (throwv Q) — Q.

CBV CBV

Next suppose that ¢ < ! and (3.2), i.e.,

=3

M'[val R/ k)i, 1/v]]
..., throw g%, val Q].

(S Ml B /) 5 (8
= [S,
1

By the induction hypothesis, M’[R?/i"] e C'[catch u; Q] and k; = ¢ for some j and €’ which

does not capture u;. Therefore,

M[E/i"] &, catchv C'[throw u; Q] = C[throw u; Q],

where C = catch v €', which does not capture w;.
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Case 6: M = xkv.M' for some v and M'. We can assume that v # wu; for any i. By the
definition of transition rules,
(S, (kv. M) [val R/Z, £/ ]
= [S, kv. M'[val B/, k/d]]
= [S, kv.throw v+, throw [ , kv.*, M'[val B/ k/@,I+1/v]].
Let &' be as;g’ = kv.throw v *, throw [ x, xv.x. First, suppose (3.1), ie., [ g, S,
M'[val B/Z, k)@, 1+1/v] ] :*> [S, val Q]. By Lemma 3.2.7,

1. [S, &, M'[valR/z ?/ IF1/v]]1 3 [ 8, &, val Q'] for some @',

1¥3

2.8, &, M'[val B/& ?/ A4+1/v] ] 1%}3 [S, &, ..., throw k; *, val Q' ] and k; = [ for
some @' and 1, or

3. [g, S, M’[valﬁ/f,:/ﬁ,l_l/v] ] 1%}3 [g, S’ ..., throw [+1 *, val Q' ] and for some Q’.

In the first case, since { + 1, k; < {+ 3 for any j, we get M’[R?/i"] e @l by the induction
hypothesis. Therefore,

MIR/T] = wo.M[R/T] > k0.q.
On the other hand,
[g, S, val@Q'] = [g, kv.throw v *, throw [ x, kv.*, val Q']

= [g, kv.throw v *, throw [ %, val (kv.val Q') ]

1

= [S, val (kv.val Q') ].
Therefore, we get Q = kv.val Q' by (3.1),1.e., Q = K?U.Q/. In the second case,

(S, MvalR/Z,k/d]] = [S &, M /[valé/f B/, i1/ ]
2 [8, 8, ..., throw [ *, val Q']

Therefore Q' = @ by (3.1), and

(S &, M'[valB/#, k/a,I+1/v]] = [S &, ..., throwl*, valQ].

By the induction hypothesis, we get M’[R?/i"] e C'[throw u; Q] for some j and €’ such that
[ = k; and C’ does not capture u;. That is,

— ko M'[R)F]
= kv.C[throw u; Q]

= C[throw u; Q],

M[R/7]

where C = kv.C’, which does not capture u;. In the third case, by the induction hypothesis, we
get M'[R/Z] o, C'lthrow v @l] for some C" which does not capture v. Therefore,

M[R/Z] = kv M'[R/d]
peme K?U.C/[thI‘OWUQ/]

—
e kv.throw v Q .
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On the other hand,

[S, M[val B/, k/i] ]
= [84, S, M’[valR/f,k/ﬁ,l—I—_l/v]] o
EE” [S, kv.throw v x, throw [ x, kv.*, ..., throw [+1 %, val Q"]
= [g, kv.throw v x, val Q']
= [S, val (kv. throw v val Q') ].

Therefore we get @ = xv. throw v (val Q') by (3.1), i.e., @ = kv. throw v Ql.
Next, suppose that ¢ < [ and (3.2), i.e.,
1S, Mval B/# k@] = [&, 8, M'[valR/Z,k/a,[¥1/v]]
:>:> [g, ..., throw 7, val Q ].

By Lemma 3.2.8,

1. [S, &, M’[valﬁ/f,?/ﬁ,l—l—_l/v] 135 [S, 8, val Q'] for some @', or

143

2. [8 &, M'[val B/z, k)@, I71/v]] =[S, &, ..., throw 7 *, val Q.

el

We need not consider the first case, because in this case,

(S, Mlval B/&,k/i]]
= [5:, S, M'[val R/, /%’/a,l+__1/v]] o
EE” [S, kv.throw v *, throw [ *, kv.*, ..., throw [+1 , val Q']
= [g, kv.throw v *, val Q']
= [g, val (k v. throw v (val Q")) |,

and this contradicts (3.2). In the second case, we get M'[R/7] &, C'[throw u; Q] for some j
and C such that ¢ = k; and ¢’ does not capture u; by the induction hypothesis. Therefore,

M[E/f] &, wv.Cfthrowu; Q] = Clthrow u; Q]

where C = kv.C’, which does not capture u;.

Case T: M = M'v for some M' and v. Since FTV (M) C {u1,...,un}, we get v = u, for some
p. By the definition of transition rules,

(S (M'o)[valR/2,k/@)] = [§ M[valR/Z £/ Fp ]
= [8, «k,, M'[valB/Z k/i]].

First, suppose (3.1), i.e., [g, *ky, M’[valé/f, ?/U] ] :T> [g, val Q]. By Lemma 3.2.7,

1. [S, *ky, M’[valé/f,?/ﬂ']] 208, *k,, val Q'] for some @', or

£1

2. [g, *ky, M’[valﬁ/f,?/ﬁ] ] l+:*>1 [g, *ky, ..., throw k; , val Q' ] and k; = [ for some Q'
and ¢.



3.2 Validity of the machine 37

In the first case, since k; < {41 for any j, we get M’[R?/i"] e @l by the induction hypothesis.
Therefore,
MIR/®) = M[B/flu, o Qup
On the other hand, we get Q' = kw.e for some w and e from (3.1). Moreover, since Q' is an
internal value, for some Q"
la. Q' = kw.val Q", or

1b. @' = k w.throw w (val Q").

In the case of la,
[S, *ky, val Q'] = [S, *kp, val (kw.val Q") ] = [S, val Q]

We so get @ = Q" from (3.1). Therefore @l = kw.Q, and

* —/

MIR/¥] 2= Qu, = (kw.Qu, > Q.

CBV

In the case of 1b,

[g, xky, val Q'] = [g, *k,, val (kw. throw w (val Q")) ]
= [S, throw kp (val Q") ]

= [g, throw k, *, val Q" ].

We so get k, = and Q" = Q from (3.1). Therefore @l = rkw. throw w @, and

M[E/f] = Q u,. = (kw.throww Q)u, &, throwu, Q.
In the second case,

Fo, M'[val B/, k/if)]
ky, ..., throw [ %, val Q']

(S, Mval B/& kjd@]] = [S,

We so get Q' = @Q from (3.1). Therefore,
(S, «k,, M'[val R/7, k/d] ] S [S +Fy, ., throw T+, val Q1.

By the induction hypothesis, we get M’[R?/i"] e C'[throw u; Q)] for some j and C’ such that
[ = k; and C’ does not capture u;. That is,

M[B/#) MR/AE

C'[throw u; Q] k,

Clthrow u; @],

B

CBV

where C = (' Ep, which does not capture u;.
Next, suppose that ¢ < [ and (3.2), i.e.,

ke, M'[val R/%, /] ]
..., throw g%, val Q].

(S MvalB/z,k/d]] = |

[ g’
=[S

By Lemma 3.2.8,
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1. [S, *Ep, M’[valé/f,?/ﬂ']] -y [g, *Ep, val Q' ] for some @', or
2. [S, *ky, M’[valé/f,?/ﬂ']] =[S, xkp, ..., throw g *, val Q].

In the first case, since k; < {41 for any j, we get M’[é/i"] e @l by the induction hypothesis.
Therefore,

= = " —
MR/ = M = T
On the other hand, [g, *k,, val Q'] :T> [g, ..., throw 7 *, val Q ] by (3.2). Therefore, we

get Q' = kw. throw w (val Q) for some w and ¢ = k,. That is, @l = kw. throw w Q and

MIR/E = Qu

CcBV .
= (kw.throww Q) u,

=  throw u, Q.

CBV

In the second case, we get M'[R/7] o, C'[throw u; Q)] for some j and C such that ¢ = k; and
C' does not capture u;, by the induction hypothesis. Therefore,

MIR/#) = M[R/#u
> C'[throw u; Q] u,

CBV —

= (Clthrow u; Q],

where C = ¢’ up, which does not capture u;.

Case 8: M = Ay.M' for some y and M'. Note that M[E/f] Ay (M’[E/f]) Since
FTV(Az. M') = {}, we get MvalR/Z k/@] = Ay. (M[valﬁ/f]). Therefore, by the definition of
transition rules,

(S, MvalB/# /)] =[S, val (\y. (M'[val B/&)))].

So (3.2) does not hold. Suppose (3.1), i.e., @ = Ay. (M'[val é/i"]) We get Q = Ay. (M’[E/f])
by Proposition 3.1.8.

Case 9: M has one of other forms. Similar. [

Corollary 3.2.10 Let M be a closed term. Let V and Q be a value and an internal value,
respectively.

1. M e V implies [ M ] = [val Q] for some Q such that Q =V, and
2. [M]2 [val Q] implies M e Q.

Proof. Straightforward from Theorem 3.2.4 and Theorem 3.2.9. [
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3.3 Realizability by the abstract machine

We can give another realizability interpretation of the formal system in terms of the abstract
machine.

Theorem 3.3.1 The relation
{ey i Ay, oo A Y E M C s {uy By, up s B

holds if and only if for any closed terms Ky, ... K., such that [ K; ] 3 [val R; ]| and R; v A; for
some R; (1 <i<m), for any context segments Sy, ..., S, and for any tag constants k1, ... kn
such that k; <1 for any j,

1 [8, ..., 8, M[I_&;/f,?/ﬁ]]%[sl, ., S, val Q) and Q x C for some Q, or

=3

2. [ 81, ..., 8, M[[_/;/f,%/ﬁ]]% [S1, ..., Si, ..., throw k; *, val Q] and Q v B; for
some j and @,

—

where the term M[R/f,?/ﬁ] stands for M[K1/x1, ..., Kn/@m, ki/ui, ... kn/un].

Proof. Straightforward from Theorem 3.2.4 and Theorem 3.2.9. [



Chapter 4

The typing system as a logic

CBV

In this chapter we discuss Lc/t considering it as a logic. We reformulate the typing system L7

e/t
into a sequent calculus since the logic can be easily understood when compared with LK and LJ.

4.1 A sequent calculus style formulation

We consider types as formulas. That 1s, we have atomic formulas, conjunctions, disjunctions,
implications and exceptions. A sequent of the system is of the form

where m and n can be 0. It looks like a sequent of LK rather than LJ ignoring the semicolon “;”
between C' and F; ...E,. Actually, its purely logical meaning is the same as LK. In this sense,
the semicolon is unnecessary. But we saw that it plays a significant role for the constructive

meaning of the sequent.

Definition 4.1.1 (Realizability of sequents) The sequents are interpreted as follows. Let
<Ty...Tm, M, uy...u,> be atriple which consists of a sequence of distinct individual variables
Z1...Tp,m, a term M and a sequence of distinct tag variables wj ...u,. We assume that the
free individual and tag variables of the term M are included in the two sequences. A triple
<x1...Tm, M, uy...up> realizes Ay...A,, — C; By...B, if and only if

{ey i Ay, A Y EM O {uy By, ug B}

Definition 4.1.2 (Inference rules) The inference rules and the corresponding realizers are as

follows. . . . .
<z, My, u> <yz, Mo, v>
F1—>A;A1 FQA—>C,A2
— (init) (cut)
A— A ITe—C; Ay Ay
<z, x, > <Zy, let z=My. My, iv>
<fy1y2'?a Ma ﬁ> <_)a Ma U> <fy1y25a Ma U>
MABI'y —C; A r—c; A IMAAT, - C; A
(o) (w— (c—)
I'1BAT, —C; A ra—c; A AT, —C; A
<Fyay1 2, M, i> <fy, M, @> <TyZ, Mly/n,y/y], ©>
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<Z, M, dvy vy w> < M, v> <Z, M, ugus v>
I' —A; A{BCA, r—A4; A ' —A; EFA
z (—w) —c)
I —A; A{CBA, r—A; FA r—A; FA
<¥ M, dvgvy 0> <¥ M, uv> <&, M[u/ui,ufus], uv>
<¥ M, > <¥ M, uv>
I'—F; A I'—=A4; AA
—— (throw) (catch)
I'—A; FA I'—=A4; A
<#, throw u M, uv> <¥, catchu M, v>
<¥z, M, i> <¥z, M, i>
ra—«ac; A I'B—C; A
(A1 —) (A2 —)
F'AnB—=C; A F'AnB—=C; A
<&y, Mprojyy/z], @ <Ty, Mlprojgy/z], @
<f, My, > <37, M, > <le, My, u> <3722, M, >
F1—>A;A1 F2—>B;A2 FlA—>C,A1 FQB—>C,A2
(—A) (V=)
F1F2—>A/\B;A1A2 F1F2AVB—>C;A1A2
<Py, <My, My>, 40> <T¥yz, case z z1. My zo. My, U T>
<¥ M, 0> <¥ M, ui>
I'—=A4; A I'—=B8B; A
o n ~ (—Vi) o n ~ (—V2)
I'—=AVvEB; A I'—=AvEB; A
<Z, injy M, @> <Z, injo M, 4>
<E, M, i> <yz', My, > <Fy, M, >
F1—>A,A1 FQB—>C,A2 FA—>B,
(O—) -7 (=)
F1F2ADB—>C;A1A2 F—>ADB,
<Fyz let z/=zMy. My, 47> <¥ Ay. M, >

<le, My, > <3722, M, w>
FlA—>B;A1 FQE—>C,A2
(a—)
F1F2A<1E—>C; BAlAz
<Zyz, let zo=(catch u' let z; =zu'. throw v My). My, uvw>

<Z M, uv>
I~ A EA

[ — A<E: A
<¥ ku. M, >

(=)

The typing system Lfﬁv is equivalent to the above sequent calculus as a logic.

Theorem 4.1.3 {x1:A1,...,2m An}t E M:C; {uy1: By, ..., u,: By} is derivable in Lfﬁv for
some x1,...,%m, M, uy,...,un, if and only if Ay ... Ay, — C; By ... By 1s derivable in the
sequent calculus.

Proof. Induction on the structure of the derivation. [J

If we ignore semicolons in the sequents, the inference rules are almost the same as the ones
of LK. It should be noted that every right logical rule introduces a logical connective into the
formula between the arrow and the semicolon, namely, the main conclusion. In the following
sections we discuss the details.
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4.2 The logical meaning of the new connective

First we consider the new logical connective <. From the logical point of view, the new connective
< 1is equivalent to V. The difference between them consists only in their implementations.

Definition 4.2.1 We use A to denote the formula obtained from a formula A by replacing
every occurrence of the logical connective <« by V. If A = B, then we denote it by A ~ B. If
I'=Ay ... 4,, A= By ... By and A; =~ B; for any ¢ (0 < i < n), then we denote it by T' ~ A.

Lemma 4.2.2 If A~ A’ then A — A'; is a derivable sequent.

Proof. Straightforward induction on the structure of the formula A. The basic idea comes from

the following two derivations.

. ind. hyp. . ind. hyp.
A— Ay B B,
/ / (_>V1) ’ B (_>V2)
A—=AVE, B—A'VE,

(«—)

A<«B— A'VB ; AAVE
(catch)
A<«B — AV B,

- ind. hyp.
- ind. hyp. B — B';
A— A B— A" B
AVB — A B
B _—wap. Y 0

(throw)
(V=)

Theorem 4.2.3 If I' — A; A is a derivable sequent. and if T ~ 1", A~ A" and A ~ A’, then
I — A"; A’ is also derivable.

Proof. Induction on the structure of the derivation of the sequent I' — A ; A. Apply Lemma4.2.2
in the case that the last rule is (init). O

If we identify A< B with AV B, the formal system can be regarded as a variant of the propo-

sitional fragment of LJ.

Theorem 4.2.4 A sequent Ay ... Ay — C; is derivable in our sequent calculus if and only if
Ay ... Ay — C is derivable in (the propositional fragment of ) LJ.

Proof. The «f part is trivial because the propositional fragment of LJ can be regarded as a
subsystem of ours. For the only if part, prove the following lemma by induction on the structure
of the derivation: If Ay ... A, — C; Ey ... E, is derivable, then /Il o ANm —CV E~1 V...V ENH

is derivable in (the propositional fragment of) LJ. The theorem is a corollary of the lemma. [

As a corollary of the theorem, we get the disjunction property of the system.

Corollary 4.2.5 (Disjunction property) Let — AV B ; be a derivable sequent. Then we can

derive — A; or — B ;.



4.3 The catch and throw mechanism as structural rules 43

We should note that there is another possibility of formulation of («—) as follows.
<¥z, M, v>
ra—c; A

(1—=)
TA<E —C:EA
<Zy, let z=yu. M, uv>

This formulation seems more natural than the original in Definition 4.1.2 from the viewpoint of
realizer construction, and is equivalent to the original as long as we have (cut). But we could

not get the cut-elimination theorem if we replaced the original rule by this rule.

4.3 The catch and throw mechanism as structural rules

The three right-structural rules of LK are divided into five rules, i.e., (—z), (—¢), (—w), (catch)
and (throw). The rules (catch) and (—c) correspond to the right-contraction rule of LK. The for-
mer introduces a catch-term. The latter means a sharing of one tag variable by two throw-terms,
i.e., multiple throw-terms can be caught by one catch-term afterwards. The right-weakening rule
of LK is divided into (throw) and (—w). The former corresponds to a throw-term. The latter

means an introduction of a redundant tag variable. We note that the rule (—w) is a derived rule.

<x, M, v>
I'—A; A

(throw)
I —E:AA

(throw)
[ — 4. EAA

(—z)
[ — 4. AEA
———— (catch)
[—A4.EA

<%, catch w (throw w (throw u M)), u 7>

But we adopt (—w) as a primitive rule because the realizer given above introduces a redundant
throw-term, i.e., a throw-term never invoked.
We have no right-exchange rule over the semicolon, but it is also a derived rule as follows.
<¥ M, uw>
I —A; FA
———— (throw)
r—FE; AEA
o ax (7P)
r—FE; FEAA
—— (catch)
I —FE; AA
<%, catch u (throw v M), v &>

In contrast to (—w), we leave it as a derived rule because there is no primitive programming
construct corresponding to the rule.

4.4 The restriction on the right implication rule

As a logic, the only and significant difference from LK is that there must be exactly one formula
on the right hand side of the sequent when we apply the right-implication rule (— D). This
restriction is required to keep the system constructive. Roughly, our system can be regarded
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as the propositional fragment of LK with this restriction on the right-implication rule. If we
dropped the restriction, the following anomaly would occur. Consider the following derivation of
AV(AD B), which is not derivable in the constructive logic.
(init)
(—V1)

(throw)

D)

—Vs)
(catch)

A—A;
A — AV(AD B);
A— B; AV(ADB)
— ADB; AV(ADB)
— AV(ADB); AV(ADB)
— AV(ADB);

The realizer would be <, catch u (injo (A z. throw v (injq #))), >. Note that the term is a
normal form since A z.throw u (injq #) is not a value. But it does not realize AV(A D B). The

evaluation process of the term by the abstract machine would be as follows.

[S1, ..., Si—1, case * y.e; z.ey, catch u (injo (A 2. throw u (injq z))) ]
= [81, ..., Si_1, case x y.e; z.es, injo (A z.throw [ (injq 7)) ]
= [&1, ..., Si=1, case *x y.e; z.e2, injo *, /\x.throwi(injl z) ]
= [81, ..., Si_1, case x y.e; z.es, injo*, val (Az.throw [ (injy 7)) ]
= [&1, ..., Si—1, case * y.e; z.e5, val (injo (A z. throw l (injq 2))) ]
= [81, ..., Si_1, ea[val (Az.throw [ (injq =))/2] ]

Note that the tag constant [ in the last is meaningless because the corresponding evaluation
context has been lost. From a computational point of view, this problem can be solved by
introducing more powerful facilities for non-local exit such as call/cc of Scheme. But it affects
the realizability interpretation of formulas. For example, although the realizers of disjunctions
still have a certain constructive meaning, they do not always contain the information that specifies
which of AV B is realized by them. It should be noted that the system without the restriction
becomes a classical one, and we do not have the soundness theorem or the disjunction property
anymore.

LK with this kind of restriction on (— D) is known as a variant of LJ, which is essentially
equivalent to LJ (cf.[18, 33, 34]). The same restriction is also required for (— V)-rule in the case

of predicate calculus.

4.5 The cut-elimination theorem

The (cut)-rule of our sequent calculus is redundant.

Theorem 4.5.1 (Cut-elimination) If a sequent is derivable, then we can derive il without

(cut)-rule.

The proof becomes more complicated than the case of LJ/LK because there exists the special
restriction to apply (— D)-rule and the new connective < has been introduced. We call the

following inference rules structural rules.

(x—) (e—) (w—) (—==z) (—c¢) (—w) (throw) (catch)
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Note that we count (throw) and (catch) as structural rules. Left-logical rules, right-logical rules
and principal formulas of logical rules are defined in the standard manner. To prove Theo-
rem 4.5.1, we first extend (cut)-rule as follows, and we call the extended rule (mix).

F1—>A;A1 F2—>C;A2
Fl(FQ_X)—)C;(AAl_X)AZ

where I'1 — X stands for the sequence of formulas obtained from I'y by removing X, and A Ay — X
stands for the sequence of formulas obtained from A A; by removing X.

We now consider only derivations that involve (mixz) instead of (cut) since we can use (miz)
instead of (cut). Tt is enough to show that we can construct a derivation which does not include
any (mix), i.e., a mix-free derivation. We prove the theorem by induction on the number of
occurrences of (mixz) in the derivation. Suppose we have a derivation II such as

1L D10y
— (rl) ——— (r2)
F1—>A;A1 F2—>C;A2

Fl(FZ_X)—)C; (AAl—X)AQ

where II; and Il are mix-free derivations and (r1) and (r2) stand for some inference rules except
(miz). We translate derivations of this form to mix-free derivations.

Definition 4.5.2 (Grades and heights) We define the grade of the (mix)-rule as the number
of logical connectives such as A,V,D and « occurring in X. The left height of the (miz)-rule
is the maximum length of the derivation paths in II;. The right height of the (mix)-rule is the
maximum length of the derivation paths in IIs. The height of the (mixz)-rule is the sum of the
left and right heights.

Proof of the cut-elimination theorem. We translate derivations of the form of II to mix-
free derivations by induction on the lexicographic ordering of the grade and the height of the
(miz)-rule. We divide the proof into the following four cases.

Case 1: The rule (rl) is not a right-logical rule whose principal formula is X. The only crucial is
the subcase that (r1) is (— D) whose principal formula is not X. Since there exists a restriction
to apply (— D), this case is not just a variant of other subcases. The derivation II has the
following form.

S .
I A— B; e
——— (=D) ————— ("2
'h - A>B; Iy — 5 As

Fl(FQ_X)—)C; (ADB_X)AZ

The conclusion is identical to T'y (T'y — X) — C'; AD B Ay since the principal formula A D B is
not X. We can derive it applying structural rules toI'y — AD B ;.

Case 2: The rule (rl) is a right-logical rule whose principal formula is X, and (v2) is (— D).
This case is crucial.
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Subcase 2-1: The rule (rl) is (— A) whose principal formula is X, i.e., the derivation I has the
following form.

- Iy 1P 1L,
i — A5 Ayp Tig — Ags Ay Iy —D;
(—=A) ==~ (=D)
il — A1 A Ay A Ags 'y -=CDD;

I''iT12(T2—X)—=CDD; (A1 Ap— X)

(mix

First, we consider the following derivation for each ¢ (i = 1, 2).

i

S [C —D;
. 1EY v (— D)
I'; = A5 A1 e —=CDD; (miz)
maxr

[ (0 —X) = CDD; (4 Ay — X)

Since the left height of the (mix)-rule is less than II, we have a mix-free form of this derivation
by the induction hypothesis. Let I}, be the mix-free derivation. Next, we consider the following

derivation.
—— (init) ————— (init)
Ay — Aqg Ag — Ay ‘I
— /\) . 2
A1 Ay — AL AN As; IyC¢ —D; )
(mix)

AlAz(FQC—X)HD; "
(w—)

AlAz(FQ—X)CHD;
(=2)

AlAz(FQ—X)HCDD;

Since the left height of the (mix)-rule is equal to or less than IT and the right height is less than
II, we have a mix-free form of this derivation by the induction hypothesis. Let II/, be the mix-free
derivation. Combining I}, T, and TI}, we get the following derivation, where T and A/, are

'y — X and A; Ay; — X, respectively.

ZH/ ZH/

. 11 . 2
F11F/2—>CDD,A/11 A1A2F5—>CDD,

F11F/2(A1A2F/2—A1)—>CDD,(CDDAlll—Al)

N - structural rules
. 12
F12F/2—>CDD,A/12 A2F11F/2—>CDD;A11—X
F12F/2(A2F11F/2—A2)—>CDD;(CDDAQQ—AQ)(All—X)

- structural rules

Tl = CDOD;5 (A Ay — X)

Since the grades of the two (mix)-rules are both less than II, we have a mix-free form of this
derivation by the induction hypothesis.

Subcase 2-2: The rule (r1) is (— V1) or (— Va) whose principal formula is X. Similar to Case
2-1.
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Subcase 2-3: The rule (rl) is (— D) whose principal formula is X. In this case, just similar to

the proof for LK or LJ because A is empty.

Subcase 2-4: The rule (r1) is (—<) whose principal formula is X, i.e., the derivation I has the

following form.

it P
I — A5 Az Ay r,¢ —D;
—<9) —————F (=D)
F1—>A1<1A2;A1 F2—>CDD, ( .
miz
[ (= X) = CDD; (A - X)
First, We consider the following derivation.
e
: r.C—D;
: Hl 72 — d (—> D)
' —4,; A:A; I's—CDD; (mis)
miz

Fl(FQ—X)HCDD;AlAzAl—X

Since the left height of the (mix)-rule is less than II, we have a mix-free form of this derivation
by the induction hypothesis. Let TI} be the mix-free derivation. Next, we consider the following

two derivations.

— (init) — (init)
Al — Ay Az — Az
TRy 2T hrow)
A1—>A1;A2 :H A2—>A1;A2 :H
— (=) -2 — (—9) -2
Al — A1 <Ay Iy —D; . Az — A1 <Ay Iy —D; )
(mix) (mix)
Al(FQC—X)HD, " AZ(FZC_X)—)D, "
(w—) (w—)
Al(FQ—X)CHD, AQ(FQ—X)CHD,
(—>) (—>)
Al(FQ—X)HCDD, AQ(FZ_X)_)CDD,

Note that we need at least two steps to derive I'y — Aj1; As in II;. Therefore the left heights
of the (mixz)-rules are equal to or less than II. Since the right heights are less than TI, we have
mix-free forms of these derivations by the induction hypothesis. Let II%; and 1T, be the mix-free
derivations. Combining II%, TI%; and II%,, we get the following derivation, where T, is T'y — X.

H’l EH/21
F1F/2—>CDD;A1A2A1—X A1F/2—>CDD, ( )
mix
FlF’z(AlF’z—Al)HCDD, (AlAzAl—X)—Al
. structural rules LI,
F1F/2—>CDD;A2A1—X AQF/Z—>CDD,

; T : - — mix)
I'y Fz(Aze AQ)HCDD, (AzAl X) As

- structural rules

F1F/2—>CDD,A1—X

Since the grades of the two (mix)-rules are both less than II, we have a mix-free form of this

derivation by the induction hypothesis.
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Case 3: The rule (rl) is a right-logical rule whose principal formula s X, and (r2) is neither
(— D), nor a left-logical rule whose principal formula is X. The proof is just similar to the one
for LK or LJ.

Case 4: The rule (rl) is a right-logical rule whose principal formula is X, and (v2) is a left-
logical rule whose principal formula is also X. The proof is also just similar to the cases of LJ
and LK.

Unfortunately the computational behavior of the catch/throw mechanism is not captured by

the cut-elimination process. Consider the following simple example.

(init)
A— A,
(throw)
A—A; A
——— (catch)
A— A,

<z, catch u (throw u z), >

This is a cut-free derivation, but the realizer includes a catch-throw pair. Another kind of proof
transformation should be considered to explain the computational behavior of the mechanism.
Roughly, the throw operation corresponds to the following form of non-local proof transformation.

I
T 1 EA (throw) :
— A; Ir—E: A
. — .
f(wxc—>wxc)
I' = E; EA I' — E; A",
T

where IV — E; A’ must be derivable from T' — E; A by applying (—#), (—w), (—c¢), (x—),
(w—) and (¢—). We will discuss the details in Chapter 5.



Chapter 5

A natural extension with a

non-determinism

5.1 A non-determinism by the catch and throw mecha-
nism

In the previous chapters, the author showed that the catch/throw mechanism corresponds to a
variant formulation of Gentzen’s NJ following the Curry-Howard isomorphism in the opposite
direction, and gave a correspondence with the conventional implementation by an abstract stack
machine, in which the computational behavior of the mechanism was treated by a fixed evaluation
strategy, the call-by-value strategy, and therefore the result of evaluation was unique. However,
generally, the catch/throw mechanism introduces a non-determinism to evaluation processes, that
18, the result of evaluation depends on the evaluation strategy. For example, let M be a term

defined by
M = catch u ((Az. Ay. 1) (throw u 2) (throw u 3)).

There are three possible results for the evaluation of M depending on the evaluation strategy as

follows.

M — catch u ((Ay. 1) (throw u 3)) — catchu 1 — 1
M — catch u (throw u 2) — 2
M — catch u (throw « 3) — 3

In this chapter, we first extend the language to capture this non-deterministic feature of the
catch and throw mechanism, and introduce its typing system, and show that the new typing

system has the subject reduction property.

5.2 A calculus with a non-determinism

We first extend the calculus described in Chapter 2 by new reduction rules. The syntax of the
terms used in the new calculus is the same as the one defined in Chapter 2, but we do not use
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let-expressions such as let k=M. N. That is, Term is now redefined as:

Term ::= Const | Var
| throw Tvar Term | catch Tvar Term
| AVar.Term* | TermTerm
| <Term, Term> | projyTerm | projoTerm
| injq Term | injoTerm | case Term Var.Term Var.Term
| & Twvar. Term | TermTvar

We need not the notions of values or evaluation contexrts in the new calculus.

5.2.1 Operational semantics

Now we define an operational semantics of the new calculus by a set of reduction rules on terms.
The non-deterministic feature of the catch and throw mechanism is introduced by the following
reduction rule.

Definition 5.2.1 (+») A relation r on terms is defined as follows:

M[throw u N/z] v throw u N (x e FIV(M) and z# M).

In other words,
C[throw u N] > throw u N,

where C # * and C does not capture any individual/tag variables occurring freely in throw u
N. Note that N may not be a value.

Example 5.2.2

<injq (throw u M), throw v N> throw u M
<injq (throw « M), throw v N> throw v N
throw u M throw u M

throw u z
throw u M
throw u (M v)

case z z.(throw u z) y.y
catch u (throw u M)
catch v (throw u (M v))

Fo o AT T

The rest of reduction rules is defined by the following rules.

Definition 5.2.3 (=) A relation — on terms is defined as follows:

catchu M — M (u g FTV(M))
catch u (throw u M) +— M (u g FTV(M))
Azx. M)N — MI[N/z]
(ku.M)v — Mv/u]
proj; <M, N> +— M
projo<M, N> +— N
case (injq L) .M y N — MI[L/x]
case (injo L) .M y.N — N[L/y]
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Definition 5.2.4 (Reduction rules) We define a relation — by the union of i and +, that

18,

M— N ff Mb?NorMb?N.

Definition 5.2.5 (—) We define a relation — as follows: M — N if and only if N is obtained
from M by replacing an occurrence of M’ in M by N’ such that M’ — N’. Let = be the
transitive and reflexive closure of the relation —.

Example 5.2.6 Let 1, 2 and 3 be distinct individual constants, and let M be as M = catch u
((Az. Ay.1) (throw u 2) (throw u 3)).

M — catch u ((Ay. 1) (throw u 3)) — catchu 1 — 1
M — catch u (throw u 2) — 2
M — catch u (throw « 3) — 3

Definition 5.2.7 (2) We define a relation % as follows:

M<“N iff M— N and M+ N,

sub

sub* a5 the transitive and reflexive closure of ¥

and

5.3 Basic properties of the calculus

In this section, we consider about the basic properties of the calculus.

Proposition 5.3.1 (Extension of m) Let M and N be terms of the new calculus, that is, M
or N does not include any let-expressions. If M —— N, then M = N.

Proof. Obvious from the definitions of —- and —. J

Proposition 5.3.2 Let L, M and N be terms and x an individual variable. Let u and v be tag
variables. If M +— N, then

1. M[L/z]— N[L/z], and
2. M[v/u]— Nv/u].
Proof. Obvious from the definition of +—. []

Proposition 5.3.3 Let L, M and N be terms and x an individual variable. Let u and v be tag
variables. If M — N, then

1. M[L/z]) — N[L/z], and
2. M[v/u] — Nv/u].

Proof. We can assume that M 2 N because it is obvious from Proposition 5.3.2 if M — N.

We show that M[L/x] — N[L/z] by induction on |M|. Suppose M ¥ N. Obviously, M must
not be a variable. If M = catch u M’ for some u and M’, then we can assume that u is fresh,
and that N = catch u N’ for some N’ such that M’ — N’. Since M'[L/x] ®¢ N'[L/x] by the
induction hypothesis, we get M[L/2] — N[L/z] in this case. We can similarly derive it even if
M has one of the other forms. We can also get M[v/u] — N[v/u] by induction on |M|. O
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Proposition 5.3.4 Let M be a term, and let x and y be individual variables. Lel u and v be
tag variables. If M[y/xz,v/u]— N, then M +— N’ and N = N'[y/x,v/u] for some N’.

Proof. Obvious from the definition of —. []
Proposition 5.3.5 If M[y/«,v/u] — N, then M — N’ and N = N'[y/x,v/u] for some N’.

Proof. Similar to the proof of Proposition 5.3.3. []

5.4 The typing system L./,

5.4.1 Syntax of typing judgements
We introduce a new typing system for the new calculus which has the extended reduction rules.

Definition 5.4.1 (Type expressions) We use the same class of type expressions, or formulas,
as Lfﬁv. That is, atomic types, conjunctions (A A B), disjunctions (A V B), implications (4 D B)
and exceptions (4 < B).

Definition 5.4.2 (Individual contexts) Individual contexls are also defined in the same way

as LCBV

e/t

Definition 5.4.3 (Tag contexts) We extend the definition of tag contexts as follows. A tag
context 1s a finite mapping which assigns a pair of a type expression and a set of individual
variables to each tag variable in its domain. We use A A’ ... to denote tag contexts. Let
Uy, ..., Uy be tag variables. Let By,..., B, be type expressions, and let Vi,...,V, be sets of
individual variables such that if w; = wu; then B; = B; and V; = V; for any ¢ and j. We
use {u1:B)*, ... u,:BY"} to denote a tag context whose domain is {ui, ..., u,} and which
assigns the pair < B;, V; > to u; for each ¢. We denote the first and the second components
of A(u) by A%(u) and AY(u), respectively. For example, A'(u;) = B; and AY(u;) = V; if
A={u:B{", . uy: B

Definition 5.4.4 (Compatible contexts) Let T' and I be individual contexts. T is compatible
with T if and only if T'(#) = I’ (z) for any individual variable x € Dom(T')N Dom(T"). We denote
it by T || I'. Note that T' UT” is also an individual context if T || T'. The compatibility of tag
contexts is also defined as follows: A is compatible with A’ if and only if A'(u) = A"'(u) for
any individual variable u € Dom(A) N Dom(A’). We denote it by A || A’. When A and A’ are

compatible, we define a new tag context A LI A’ as follows.

(At (u), AY(u) U A" (u)) if u € Dom(A) N Dom(A’)
(AUANYu) =< Au) if u € Dom(A) and u ¢ Dom(A")
A'(u) if u ¢ Dom(A) and u € Dom(A")

Note that Dom(A U A’) = Dom(A) U Dom(A').

Definition 5.4.5 Let A be as A = {u; :BYl, . up:BY=} and let w and v be tag variables. If
{u,v} C Dom(A) implies A*(u) = A%(v), then we define a tag context Afv/u] as follows.

Alv/u] = {ur[v/u] : BY*, ... unv/u] : B},

We define ['[y/«] similarly for an individual context T' and individual variables 2 and y.
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Definition 5.4.6 Let V be a set of individual variables. We define a tag context A[V/{x}] as
follows.

Dom(A[V/{xz}]) = Dom(A)
AV/ ()] () = A'(n)
AV} (w) :{ f(<)> —{EHuvifeear()

otherwise.

Definition 5.4.7 (Typing judgements) Let T' and A be an individual context and a tag con-
text, respectively, such that AY(u) C Dom(T') for any v € Dom(A). Let M be a term, and C' a

type expression. Typing judgements have the following form.
r-M:C; A

The intended meaning of a typing judgement {zi:A4y,... 2m An}t F M:C; {uy :BYI, e
uy, : BY=} is roughly that when we execute the program M supplying values of the types A1 ... A,
for the corresponding free variables z1, ..., z,, of M, it normally reduces to a value of the type
C, otherwise the program throws a value of B; with a tag u; for some j (1 < j < n), and the

thrown value depends on only the individual variables which belong to V;.

5.4.2 Ly,

We denote the typing system by L.;;, which can be an extension of Lfﬁv.

Definition 5.4.8 (Typing rules) L./, is defined by the following set of typing rules.

(var)

Tu{z:A}Fa:A; A

L-M:A; Au{u:AV}
I'Fcatchu M:A; A

(catch)

I FME:A
[ UTy F throw u M: A; AU {u: EPom(T)Y

(throw)

Tu{e:A}FM:B; A
F'FAx. M:ADB; A

(O-1) (x ¢ AY(u) for any u € Dom(A))

Fll_MADB,Al Fz"NA,AQ
F1UF2|_MNZB;A1|_|A2

(O-E)

L-M:A; Au{u:EV}
'Fru M:A<E; A

(<)



54 A natural extension with a non-determinism

Tk M:A<E; A

(«E)
[MUTs F Mu:A; AU {u: BP0}
Fll_MZA;Al Fz"NB,AQ AL
[LUls k<M, N>:AAB; Ay UA, (A1)
'-M:AAB; A '-M:AAB; A
- (A-E) - (A2-E)
I'projy M:A; A I'-projoM:B; A
rEM:A; A 'EM:B; A
LI (Vl_I) . . (\/2—1)
I'Finjy M:AVEB; A I'Finjo M :AVEB; A

Fll_LA\/B,Al FzU{l‘A}l‘Mc,Az Fgu{yB}l_NC,Ag

ruls;ul'skcase L .M y.N:C;
Ay U Ay[Dom(Iy)/{z} U Ag[Dom(I'y)/{y}]

(V-E)

The side condition for (D-1) is necessary to keep the system constructive. Note that the following

inference rule of Lfﬁv corresponds to (D-1) of L.y;.

Tu{z:A}+ M:B; {}
'FAa. M:ADB; {}

(>-1)

As a logic, (D-T) of Lf/'?’ is equivalent to (D-1) of Definition 5.4.8, but is too restrictive with

respect to the variation of proofs, that is, typed programs. For example, the following typing
judgement, which is derivable in L.j;, would not be derivable if we replaced (D-1) by the one of

LC/BV
eft ”
{}Fecatchu (Az.throwu (Ay.y)): ADA; {}

Moreover, the language would not have a subject reduction property, because
{}Fcatchu ((Az.Az.2) (throwu (Ay.y))): AD A; {}
would be still derivable, but
catch u ((Az. Az.2) (throw u (Ay.y))) — catch u (A z. throw u (A y. y)).

This is the reason why we maintain the set of the relevant individual variables to each tag in tag
contexts of typing judgements.

The following example of a derivation shows that the calculus does not have Church-Rosser
property even if we consider only the well-typed terms. Let M be the term Axz. A f. catch u
((Ay.x) (throw u (f #))). The well-typed term M has two normal forms as follows.

M — Az. A f.catch u (throw u (fz)) = Az A f. fx
M—=Xz.Af catchua — Az A fx
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Example 5.4.9 Let T heasT' = {a: A4, f: AD A}.

rrasn g " trea g U

(v — (o-E)
{y:B}Fa:4;{} I fa:As{}
(>-1) (throw)
{}FAy.2:BDA; {} ['F throw u (fz): B; {u: Al®/1}

T'F Ay x) (throw u (fz)): A; {u: Al®1}

'k catch u ((Ay.z) (throw u (f2))): 4; {}
{r:AYF A f.catch u (Ay.2) (throw u (f2)): (ADA)DA; {}

{F Az A focatch u (Ay.x) (throwu (f2)):AD(ADA)DA; {}

(catch)

(>-1)
(O-1)

5.4.3 Basic properties of L./,

In this subsection, we presents a some basic properties of the system as a preparation for proving

the subject reduction property of L./;.

Proposition 5.4.10 If T - M :C; A s derivable, then FIV(M) C Dom(T') and FTV(M) C
Dom(A).

Proof. By induction on the derivation of ' - M :C'; A. [

Definition 5.4.11 Let A and A’ be tag contexts. We define a relation A C A’ as follows. The
relation A T A’ holds if and only if

e Dom(A) C Dom(A'), and
o Al(u) = A’(u) and A¥(u) C A’ (u) for any u € Dom(A).
Note that AC (AUA)If Al A"

Definition 5.4.12 Let d be a natural number. We say a typing judgement is d-derivable if there

exists a derivation of the judgement whose depth is less than or equal to d.

Proposition 5.4.13 Let d be a natural number, and let T' = M :C; A be a d-derivable typing

Judgement.
1. IfT CT and AT A', then TV F M :C; A’ is also d-derivable.
2. If Tly/x] is well defined, then Uly/a]F M[y/2]:C; Al{y}/{z}] is also d-derivable.
3. If Alv/u] is well defined, then T+ Mv/u]:C; Alv/u] is also d-derivable.
Proof. By simultaneous inductions on d. []
Proposition 5.4.14 Let z and u be as ¢ ¢ FIV(M) and u ¢ FTV(M).
1. IfTU{a: A} F M:C; A is derivable, then T+ M :C; A[{}/{z}] is also derivable.

2. IfTFM:C; Au{u:EYY is derivable, then ' = M :C'; A is also derivable.

Proof. Straightforward induction on the derivations. []
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Proposition 5.4.15 (Extension of Lfﬁv) Let M be a term of the new calculus, that is, M
does not include any let-expressions. Let I be a tag context, and C' a formula. Let uy, ..., u, be

a sequence of tag variables, and lel By, ... B, be a sequence of formulas. If T+ M :C'; {u;y: By,

ooy B} ds derivable in LERY, then TH M :C'; {uy :BlDom(F) Uy, Br?om(r)} s derivable

eft g ey

m Lc/t’

Proof. By induction on the depth of the derivation of T' v M :C'; {uy:By,...,u,:By}. Use
Proposition 5.4.13. []

Proposition 5.4.16 (Throw) Let M be term, and lel u be a tag variable. If T F throw u
M :C; A is derwvable, then I' - throw u M : A; A is also derwwable for any type A.

Proof. Since I' F throw v M :C; A is derivable, sois I' - M : E'; A’ for some E and A’ such
that A = A’ U {u: EPo?(I)} . Therefore, we can derive I'  throw u M:A; A for any A by
(throw). O

Proposition 5.4.17 (Substitution) Let T'y, Ta, Ay and As be as Ty || Ty and Ay || Aq. If
W EN:A; Ay and ToU{a: A} E M :C; Ay are derivable, then Ty UTo F M[N/z]:C'; Ay U
Aq[Dom(T1)/{x}] is also derivable.

Proof. By induction on the depth of the derivation of Ts U {a: A} = M :C; As. Suppose that
I EN:A; Ay and ToU{z: A} M :C'; Ay are derivable. First, suppose also that « ¢ FIV(M),
that is, M[N/a] = M. Since Ty U{z: A} - M :C'; Ay is derivable, sois To b M :C'; As[{}/{2}]
by Proposition 5.4.14, and this implies that Ty UT2 = M : C'; AU A3[Dom(Ty)/{x}] is derivable
by Proposition 5.4.13. Therefore, we now assume that © € FIV(M). By cases on the last rule
used in the derivation of Ty U{az: A} F M :C'; A,.

Case 1: The last rule is (var). That is, M = x since € FIV(M). We can derive T'; U
Ty MIN/x]:C; Ay U Ay[Dom(T'y)/{x}] by applying Proposition 5.4.13 to the derivation of
I N:A; Ay since M[N/z]=N and C = A .

Case 2: The last rule is (catch). In this case, M = catch u M’ and the following judgement is
derivable for some u, V and M’.

FoU{z:AYFM C; Ay U {u:CY}

We can assume that u ¢ Dom(A;) by Proposition 5.4.13. By the induction hypothesis, we have
a derivation of

[y UL b MN/2]:C5 Ay U (A U {u:CY P)[Dom(L1)/{z}]. (5.1)

Since u ¢ Dom(A1), we get M[N/xz] = catch u (M'[N/z]). By applying (catch) to (5.1), we get
Fl U Fz F M[N/l‘] C, Al L Az[Dom(Fl)/{x}]

Case 3: The last rule is (throw). In this case, M = throw u M’ and the following judgement is
derivable for some u, M’, E, T’ and A such that T, C ToU{x: A} and Ay = AU {u: EPomT2)},

M E; A
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We get @ € FIV(M'), that is, € Dom(T'y) from € FIV(M). Let T be as T = Ty, — {z: A},
that is, T, = T' U {2 : A}. By the induction hypothesis, we have a derivation of

LUl k M'[N/z]:E; Ay UA[Dom(Ty1)/{z}].
Since M[N/xz] = throw u (M'[N/z]), by applying (throw),
Ty UT F M[N/z]:C; Ay U A[Dom(Ty)/{z}] U {u: EPor(TvTy
Since I' C I's, by Proposition 5.4.13 again,
Ty UTy - M[N/2]:C; Ay UA[Dom(Ty)/{e}] U {u: EPomTUY

Note that
A[Dom(T1)/{x}]u {u: EPomTVIY = Ay [Dom(T ) /{z}]

because Ag = A U {u: EPoIYEIY and & ¢ Dom(T).

Case 4: The last rule is (D-I). In this case M = Ay.M', C = C; D C> and the following
judgement is derivable for some y, C1, Cy and M’ such that y ¢ AY(w) for any u € Dom(A,).

FzU{l‘ZA}U{yZCl}l_M/ZCQ; Az

We can assume that y ¢ Dom(T'1) by Proposition 5.4.13, and get M'[N/x] = Ay. (M[N/z]). By

the induction hypothesis, we have a derivation of
Fl U Fz U {y : Cl} F M/[N/l‘] ZCQ ) Al L Az[Dom(Fl)/{x}] (52)

We get y ¢ (A1 U Ay[Dom(T1)/{x}])"(u) for any u € Dom(A; U As[Dom(T'1)/{x}]) since
y ¢ AY(u) for any u € Dom(As) and y ¢ Dom(T'1). Therefore, we can derive

Fl U Fz F Ay (M/[N/l‘]) ZCQ ) Al L Az[Dom(Fl)/{x}]

by applying (D-1) to (5.2).

Case 5: The last rule ts one of the rest. Similar. [

5.5 The subject reduction property of L/,

As mentioned in Section 5.4.2, the calculus does not have Church-Rosser property even if we
consider only the well-typed terms. However, it has the subject reduction property, which com-
pensates for this unpleasant feature. In this section, we show the subject reduction property of
Lc/t'

Lemma 5.5.1 I[f ' M :C'; A s derwable and M v throw v N, then I' b throw v N :C'; A
15 also derivable.

Proof. By induction on the depth of the derivation of I' W M : C'; A. Suppose that ' M :C'; A
is derivable and M +~ throw v N. By Proposition 5.4.16, it is enough to show that I' - throw v
N :C'; A is derivable for some C’. By cases according to the last rules used in the derivation.
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Case 1: The last rule is (var). This is impossible because M + throw v N.

Case 2: The last rule is (catch). M = catch v M’ and the following judgement is derivable for
some u, V and M’'.

TFM:C;Au{u:CY} (5.3)
Since M = throw v N, we get u ¢ FTV (throw v N) and
M’ =throwov N or M’ = throw v N.
Therefore, from (5.3) or the induction hypothesis on (5.3),
I'Fthrowv N:C; Au{u:CV}.

We get T'F throw v N :C'; A by Proposition 5.4.14 since u ¢ FTV (throw v N).

Case 3: The last rule is (throw). In this case, M = throw u M’ and the following judgement
is derivable for some u, M’, E, IV and A’ such that IY CI'and A = A’ LI {u:EDom(FI)}.

I'F M :E; A (5.4)

We get M’ = throw v N or M’ =~ throw v N from M r~ throw v N. Therefore, from (5.4) or
the induction hypothesis on (5.4),

I'"F throwv N: E; A/,

We get I'+ throw v N : E'; A by Proposition 5.4.13 since IV C T and A’ C A.

Case 4: The last rule is (O-1). M = Ax. M', C = C; D Cs and the following judgement is
derivable for some z, C, Cy and M’ such that ¢ AY(u) for any u € Dom(A).

Tu{z:Ci}F M :Cy; A (5.5)
Since M = throw v N, we get x ¢ FIV(throw v N) and
M’ =throwov N or M’ = throw v N.
Therefore, from (5.5) or the induction hypothesis on (5.5),
Tu{z:Ci}Fthrowov N:Ch; AL

We get T'F throw v N :Cy; A by Proposition 5.4.14 since # ¢ FIV(throw v N).

Case 5: The last rule ts one of the rest. Similar to Case 2 and Case 3. []
Lemma 5.5.2 If ' M :C'; A s derivable and M v N, then I'E N :C'; A 1s also derivable.

Proof. By induction on the depth of the derivation of I' W M : C'; A. Suppose that ' M :C'; A
is derivable and M — N. By cases according to the form of M.

Case 1: M = catchu N and u ¢ FTV(N). In this case, [ - N:C; AU {u:C"} is derivable
for some V. We get T'= N :C'; A by Proposition 5.4.14 since u ¢ FTV(N).
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Case 2: M = catch u (throw u N) and v ¢ FTV(N). The following judgement is derivable
for some V, I and A’ such that IV C T and AU {u:CV} = A’ U {u:CPomT}

I'FN:C; A

Since IYCT and A'C AU{u:CY}, T N:C; Au{u:CV} is derivable by Proposition 5.4.13.
Therefore, ' N :C'; A is also derivable by Proposition 5.4.14 since v ¢ FTV(N).

Case 3: M = (Aw. My) My and N = M[My/z] for some &, My and M. The following two
judgements are derivable for some A, I'y, I's; Ay and As such that I' = 'y UT2, A = Ay LA,
and x ¢ AY(u) for any u € Dom(Ay).

Flu{l‘ZA}l_MlZC;Al (56)
Fz F M2 A, Az (57)

Therefore, by Lemma 5.4.17, we get '+ M[Mz/2]:C; A[Dom(T3)/{z}]U Az from (5.6) and
(5.7), where A1[Dom(T2)/{z}]U Ay = A1 U Ay = A since x ¢ AY(u) for any u € Dom(Ay).

Case 4: M = (ku. M")v and N = M'[v/u] for some u, v and M’. The following judgement is
derivable for some £, I', A’ and V such that I’ ¢ T and A = A’ U {v: EPomT)Y,

I'FM:C; ANu{u:EYY

Since A || {v: EPomTN T/ - M'[v/u] :C; A'lv/u]U{v: EV} is derivable by Proposition 5.4.13.
Since I C T', by Proposition 5.4.13 again,

L'k M [v/u]:C; Alv/u]U{v:EYY.
Since V' C Dom(I') and A" (u) C Dom(T”),
A/ uf{v:EVY T Allv/u] U {v: Py £ A/ U {v: EPoT)Y = A

Therefore, T+ M'[v/u] :C'; A is derivable by Proposition 5.4.13.
Case 5: M = proj, <My, My> and N = M; for some ¢ (i =1,2). Similar.

Case 6: M = case (inj; My) ©1.My 2. Mz and N = M;[My/®;] for some ¢ (i = 1,2). Similar.
O

Lemma 5.5.3 IfI'+- M :C; A is derivable and M — N, then I' = N :C; A is also derivable.
Proof. Straightforward from Lemma 5.5.1 and Lemma 5.5.2. ]

Theorem 5.5.4 (Subject reduction) If T - M :C'; A is derivable and M — N, then T F
N :C; A is also derivable.

Proof. By induction on the depth of the derivation of I' W M : C'; A. Suppose that ' M :C'; A
is derivable and M — N. If M +— N, then trivial by Lemma 5.5.3. Therefore we can assume
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that M — N and M +£ N. By cases according to the last rules used in the derivation. A typical
one is the case that the last rule is (throw). In this case, M = throw u M’ and

I'eM:E; A

is derivable for some u, M’, E/, I and A’ such that I C T" and A = A’ U {u:EDom(FI)}. Since
M — N and M v/ N, M’ — N’ and N = throw u N’ for some N’. Therefore, I'+ N': E'; A’
is derivable by the induction hypothesis. We get T' F throw u N': E; A by applying (throw).

The proofs for other cases are just similar. [

5.6 L., as a logic

In this section, we show that L.;; can be regarded as a conservative extension of the propositional
fragment of the standard intuitionistic logic such as Gentzen’s NJ and LJ. We first translate
each typing judgement of L./, into a formula, and then show its provability in the standard
intuitionistic logic. Let < be a total ordering over the union of Var and Twar through this

sectlon.

Definition 5.6.1 Let A be a tag context, and u a tag variable. We define a tag context A\u as

follows.

Dom(A\u) = Dom(A)— {u}
(A\)() = AQ) (v € Dom(A) - {u})

Let T be an individual context, and 2 an individual variable. T\z is defined in the same way.

Definition 5.6.2 Let A be a tag context, and # an individual variable. We define two tag
contexts Dep(x, A) and Indep(z, A) as follows.

Dep(z, {}) = Indep(z, {}) = {}

AV .
Dep(a:, {UAV}UA) = {UA }UDep(x, A\U) lfl‘ev
Dep(x, A\u) otherwise
AV .
Indep(z, fu:AYJUA) = {u: A"} U Indep(z, A\u) ifzé V
Indep(z, A\u) otherwise

Definition 5.6.3 Let A be a non-empty tag context. We define a formula Disj(A) as follows.
Let u be the tag variable such that « € Dom(A) and « < v for any v € Dom(A). Then,

Disj(A) = A'(u) if Dom(u) is a singleton
J | AYu)V Disj(A\u) otherwise.

Definition 5.6.4 Let I be an individual context, A a tag context. Let C' be a formula or a
place holder denoted by *. We define a formulas Trans(T, C, A) as follows.

C if Dom(A) = {}
Trans({}, C, A)= ¢ Disj(A) if Dom(A) # {} and C = =
C'V Disj(A) otherwise
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Let « be the individual variable such that © € Dom(T') and # < y for any y € Dom(T'). Then,

I'(z) D Trans(T\z, C, Dep(z, A)) if Dom(Indep(z, A)) = {}
Trans(T', C, A) = (T'(z) D Trans(T\z, C, Dep(z, A)))

therwise.
V Trans(T\z, *, Indep(z, A)) orierise

Proposition 5.6.5 I' - M :C'; A is derwable in L.y if and only if Trans(I', C, A) is provable
i the propositional fragment of NJ.

Proof. By induction on the derivation of ' - M :C'; A. [



Chapter 6

A term model for the extended

system

6.1 Term models

Definition 6.1.1 Let red be a subrelation of —. A red-sequence is a possibly infinite sequence
My, My, M, ... of terms such that M; red M;;, for any :.

Definition 6.1.2 Let red be a subrelation of —. A term M is strongly normalizable w.r.t.
red 1if there exists no infinite red-sequence starting with M. We simply say that M is strongly
normalizable if so is w.r.t. —.

Definition 6.1.3 Let n be a natural number. We define a relation *2 inductively as follows.
1. M Niff M = N.
2. M*F N iff M 22 N or M — M’ and M’ 22 N for some M’.

We also define *“2*2 in the same way.

Proposition 6.1.4 Let M be a term, and let x and y be individual variables. Let u and v be
tag variables, n a natural number. If My/z,v/u] 23 N, then M *2 N’ and N = N'ly/z,v/u]

for some N'.

Proof. Straightforward from Proposition 5.3.5. J

Definition 6.1.5 (Types) We define a collection Type of sets of terms as follows:
Type ={T | Forany M € T, M — N implies N € T. } .

Elements of Type are called types. We use T', S, ... to denote types.

Definition 6.1.6 (Regular types) A type T is regular if and only if

M € T implies M[v/u] € T for any term M and for any tag variables u and v,
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Definition 6.1.7 Let V and V' be finite sets of individual variables, and z an individual variable.

We define V[V'/{x}] as

VI ge)] = {i/V—{x})UV’ ifzeV

otherwise.

Definition 6.1.8 (Frames) A set of term A is a frame if and only if
1. X is a regular type,
2. x € X for any individual variable z,
3. if M, N € X, then M[N/xz] € X, and
4. f ' M :C; A 1s derivable for some I' and A, then M € X.

Definition 6.1.9 Let n be a natural number, u a tag variable, T" a type, and V a finite set of
individual variables. A set of terms J,(u, T, V) is defined as follows.

M e Jp(u, T, V) if and only if

1. if M *2 throw u K, then K € T,
2. if M 22 K for some normal form K such that « € FTV(K) and FIV(K)nV = {},

then K = throw u L for some closed term L,
if M 2% catch v L for some k (k <n)and v#£u, then L € Tp_p(u, T, V),
if M %% throw v L for some k (k < n), then L € J_1(u, T, V),
if M 22 X\y. L for some k (k <n),then L € Tp_p(u, T, V —{y}),
if M 2% L, L, for some k (k <n),then Ly, Ly € Tp_p(u, T, V),
if M 2% <, Ly> for some k (k <n), then Ly, Ly € Jn_(u, T, V),
if M %% proj; L for some k (k < n) and some i (i = 1,2), then L € J,_1(u, T, V),
if M *% inj; L for some k (k <n)and somei (i =1,2), then L € Jp_p(u, T, V),
10. if M *£ case Ly y1.L1 y».Lo for some k (k < n), then
— Lo € Tn—i(u, T, V), and
— for any ¢ (¢ = 1,2), there exists some V; such that V/[FIV(Ly)/{y;}] C V and
Li € Tn-p(u, T, VY),
11. if M 2% ko, L for some k (k < n) and v # u, then L € J_x(u, T, V), and
12. if M 2% Lu for some k (k < n), then L € J_x(u, T, V).

O oo =1 O Ot ke W

Note that M € J,(u, T, V) is defined by induction on the lexicographic ordering of n and |M]|.

Proposition 6.1.10 Let M be a term such that M € Jp(u, T, V).
1L If m<n, then M € Tp(u, T, V).

2. If M 22N for some k (k <n), then N € Jp_p(u, T, V).

Proof. By induction on the lexicographic ordering of n and |M]. O



64 A term model for the extended system

Proposition 6.1.11 If T C T" and V C V', then Jn(u, T, V) C Tn(u, T', V') for any n and
u.

Proof. By induction on the lexicographic ordering of n and |M]. O

Proposition 6.1.12 If M € Jp(u, T, V) and FIV(M) C V' then M € J(u, T, V).
Proof. By induction on the lexicographic ordering of n and |M]. O

Proposition 6.1.13 If u ¢ FTV (M), then M € Jp(u, T, V) for any type T.

Proof. By induction on the lexicographic ordering of n and |M]. O

Proposition 6.1.14 Let T be a reqular type. Let M be a term, and v and w tag variables such

1 If w#u, then Mw/v] € Tp(u, T, V).
2. If M€ Jo(v, T, V), then Mw/v] € Tp(u, T, V).
Proof. By induction on the lexicographic ordering of n and |M]|. Use Proposition 6.1.4. [J
Definition 6.1.15 Let u be a tag variable, and 7" a type. We define J(u, T, V) as follows.
T, T, VYy={M | M € Jp(u, T, V) for any n}.
Definition 6.1.16 Let u be a tag variable, and 7" a type. We define 7~ (u, T, V') as follows.
o if M = throw u K, then K € T,

e if M is a normal form such that w € FTV(M) and FIV(M)NV = {}, then M = throw u
L for some closed term L,

e if M = catchv L and v # u, then L € J(u, T, V),

e if M =throw v L, then L € J(u, T, V),

o if M =Ay. L, then L e J(u, T,V —{y}),

o if M = Ly Ly, then Ly, Ly € J(u, T, V),

o if M = <Ly, Ly>, then Ly, Ly € J(u, T, V),

e if M = proj,; L for some ¢ (i = 1,2), then L € J(u, T, V),
e if M =inj, L for some ¢ (i = 1,2), then L € J(u, T, V),
e M = case Ly y1.L1 ys.Lo, then

— LoeJ(u, T, V), and

— for any 7 (i = 1,2), there exists some V; such that V/[FIV(Ly)/{y;}] C V and
Li S j(ua Ta ‘/i/)a

e if M =kv.L and v # u, then L € J(u, T, V), and
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o if M =Lu, then L € J(u, T, V).
Proposition 6.1.17 M € J(u, T, V) if and only if
M = N implies N € J~(u, T, V).
Proof. Obvious from the definitions. []

Proposition 6.1.18 If M € J(u, T, V), then M = N implies N € J(u, T, V), that is,
T(u, T, V) is a type.

Proof. Straightforward from the previous proposition. []

Proposition 6.1.19 If u ¢ FTV (M), then M € J(u, T, V) for any T and V.
Obvious from Proposition 6.1.13 and Proposition 6.1.17.

Proof. [

Proposition 6.1.20 If T C T and V C V' then J(u, T, V) C T (u, T", V') for any tag variable
u.

Proof. Straightforward from Proposition 6.1.11 and Proposition 6.1.17.

Proposition 6.1.21 Let u be a tag variable. If M € J(u, T, V) and FIV(M) C V' then
Me J(u, T, V').

Proof. Straightforward from Proposition 6.1.12 and Proposition 6.1.17. ]

Proposition 6.1.22 Let T be a reqular type. Let M be a term, and v and w tag variables such
that M € J(u, T, V).

1. If w# u, then M[w/v] € T (u, T, V).

2. If Me J(v, T, V), then M[w/v] € T (u, T, V).
Proof. Straight forward from Proposition 6.1.14 and the definition of J(u, T, V). O
Proposition 6.1.23 If M € J~(u, T, V) and M **& M’', then M' € T~ (u, T, V).
Proof. Straightforward from the definition of 7~ (u, T, V') by Proposition 6.1.18.

Definition 6.1.24 We define a set D~ of terms as follows. M € D~ if and only if
1. for any proper subterm N of M, N € D™, and

2. if M is a normal form, then

(a) if M = My My for some My and Ma, then FIV (M) # {},

(b) if M = proj;, M’ for some i (i = 1,2) and M’, then FIV(M') #{},

(¢) if M = case My x.M; y. My for some My, My, Ma, x and y, then FIV(My) # {}, and
(d) if M = M'v for some M’ and v, then FIV(M') # {}.
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Definition 6.1.25 Let C' be a formula and X a frame. We define 77 (X, C) and Z(X, C)
inductively as follows.

e M (X, C)iff
1. MeX,
2. M is strongly normalizable, and
3.if M = K, then K € D~ NI~ (X, C).
e If C is an atomic type expression, then M € T~(X, C) iff

1. if M is a normal form and FIV(M) = {}, then

— M = throw u L for some u and L, or
- M e A(C).
e M eI (X, C1DCy)iff
1.if M =Ay. L and K € IZ(X, C4), then L[K/y] € I(X, C3), and
2. if M is a normal form and FIV (M) = {}, then

— M = throw u L for some u and L, or
— M = Xy. L for some y and L.

o M eI~ (X,CyACy)iff

1. if M = <Ly, L3>, then Ly € T(X, C}) and Ly € Z(X, C3), and
2. if M is a normal form and FIV (M) = {}, then

— M = throw u L for some u and L, or

— M = <Ly, Ly> for some Ly and L.
o M eI (X, CiVCy)iff
1. if M =inj; L for some i (i = 1,2), then L € Z(X, C}), and
2. if M is a normal form and FIV (M) = {}, then

— M = throw u L for some u and L, or

— M =inj, L for some ¢ (i = 1,2) and L.
[ MEI_(X, 01402) iff

1.ift M =kv. L, then L€ Z(X, C1)NJ (v, Z(X, Cy), FIV(L)), and
2. if M is a normal form and FIV (M) = {}, then

— M = throw u L for some u and L, or

— M = kwv. L for some v and L.
Proposition 6.1.26 Let X' be a frame. T(X, C) is a regular type for any formula C.

Proof. By induction on the structure of C'. Use Proposition 5.3.5, Proposition 6.1.22 and the
properties of the frame X'. [
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Proposition 6.1.27 Let X be a frame. x € T(X, C) for any type C' and any individual variable

x.

Proof. We get « € X from the second property of frames. The other requirements for € Z(X', C)

are rather trivial since x is an individual variable. ]

Lemma 6.1.28 Let X be a frame. If throw u M € Z(X, A), then throw u M € Z(X, C) for
any C.

Proof. Suppose that throw « M € I(X, A). Obviously throw « M € X and throw u M is
strongly normalizable. Suppose that throw v M = K. By the definition of —, K = throw v
L for some v and L. Therefore, K € 7~(&X, C) for any formula C'. g

Lemma 6.1.29 Let X be a frame, and C a formula. If
1. Mex,
2. M ¥ K implies K € D™,
3. M ¥ K implies K € T-(X, C),

4. for any mazximal proper subterm N of M, there exists some formula A such that N €
(X, A), and

5. 4f M "% L — K for some L, then K € (X, C),
then M € T(X, C).

Proof. First, we show that M is strongly normalizable. By the fourth premise, M is strongly
normalizable w.r.t. £/, On the other hand, we get that L 1s strongly normalizable for any L such
that M *“%* K — L from the last premise. Therefore, so is M. Next, suppose that M =% K. It
is enough to show that K € D~ NZ~ (X, C) since M € X by the first premise. There are three

possible cases as follows:
1. M K,

2. M *“&* M'[throw v L/z] +— throw v L = K for some M’, z, v and L such that » €
FIV(M') and M' # z.

3. M b pp = L 2 K for some M’ and L.

In the first case, we get K € D~ NI~ (X, C) from the second and the third premises. In the
second case, there exists some N such that N % throw v L and N is a maximal proper subterm
of M. Therefore, throw v L € Z(X, A) for some A by the fourth premise. We get throw v
L eI(X,C) by Lemma 6.1.28, and therefore, K € D~ NI~ (X, C) since throw v [ = K. As
for the last case, it is obvious because L € Z(X, C) from the last premise. This completes the
proof of M € Z(X, C). O

Lemma 6.1.30 Let u be a tag variable, and T a type. If

1. M2 K implies K € J~(u, T, V),
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2. M %[ = K amplies K € J(u, T, V), and
3. if M"Y L— K for some L, then K € J(u, T, V),

then M € J(u, T, V).

Proof. Suppose that M 2 K. There are three possible cases as follows:
1. M 4t K

2. M *“&* M'[throw v L/z] = throw v L = K for some M', z, v and L such that » €
FIV(M') and M' # z,

3. M sube pp = L = K for some M’ and L.

It is enough to show that K € J~ (u, T, V). In the first case, we get K € J (u, T, V) from
the first premise. In the second case, K € J~ (u, T, V) because throw v L € J(u, T, V) by
the second premises. As for the third case, L € J(u, T, V') from the last premise. Therefore,
KeJ (wT, V). 0O

Definition 6.1.31 We define a type D as follows. M € D iff
M % K implies K € D~ for any K.
Definition 6.1.32 A frame X is admissible if and only if
ifM, NeXxXnJ(u,T,V)and MN € D, then MN € J(u, T, V).

This property of admissible frames is crucial to the construction of the term model discussed here,
but it 1s not trivial whether such a frame exists or not. We will give an example of admissible
frame later.

Theorem 6.1.33 Let X be an admissible frame. Let T = {x1:A41,.. . em: A} and A =
{u1:By,...,un:Bp}. Let T F M:C; A be a derivable judgement. Lel Ny, ..., Ny, be lerms
such that Ny € T(X, A;) for any ¢ (1 < i < m). Let u a tag variable, and V a finite
set of individual variables. We define K and U as K = K[Ni/z1,...,Np/xpy] and U =
UFIV(Ny) {1}, ..., FIV(Np)/{xm}] for any K and U. Then,

e McI(X,C), and (6.1)
o if N; € J(u, Z(X, Al(u)), V) for any i (1< i< m), then

M€ J(u, I(X, Al(w)), A(w)U V), (6.2)

where Z(X, A(u)) = {} and AY(u) = {} if u & Dom(A).

Proof. Let T'= M :C'; A be a derivable judgement. By induction on the depth of the derivation.
Suppose that

N; €T(X, A;) forany i (1 <i<m). (6.3)

First of all, we show M € X. Since T' - M :C'; A is derivable, M € X by the last property of
frames. Since N; € X by (6.3), we get M € X by the third property of frames. We show the rest
properties of M for (6.1) and (6.2) by cases according to the form of M.
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Case 1: M 1is an indiwvidual variable. In this case, we can assume that M = x; for some i.
Therefore, obvious because M = N; and C = A4;.

Case 2: M = catch v M’ for some v and M'. Thatis, ' - M':C; AL {U:Cvl} is derivable
for some V/. We can assume that v ¢ FTV(N;) for any i. Let A’ be as A’ = AU{v:CV'}. By

the induction hypothesis,
M eI(X,C). (6.4)

On the other hand, since v ¢ FTV(N;), we get
Ni € J(v, Z(X, A"(v)), {}) (6.5)

for any ¢ by Proposition 6.1.19. Therefore, by the induction hypothesis, we get

M e J, I(X, A'(v)), A (v)) = T(v, (X, C), A (v)). (6.6)

To show (6.1), we check the five premises of Lemma 6.1.29. We have M € X. For the second
premise, suppose that M ““2* K for some K. By the definition of £, we get K = catch v K’ for
some K’ such that M’ % K’. Since M’ € D by (6.4), we get K/ € D~. Therefore, K € D~ from
the form of K. For the third premise, suppose that M ¥ K = catch v K’ for some K and K’
such that FIV(K) = FIV(K') = {}. We show that K is not a normal form. Since v ¢ FTV(K')
implies K — K', we assume that v € FT'V(K’). However, by (6.6), K’ = throw v L for some
closed term L. This implies K = catch v throw v L w L, that is, K is not a normal form.
Therefore, third premise is now obvious from the form of M and the definition of 7~ (X, C). On
the other hand, the fourth premise holds for M by (6.4). As for the last premise, suppose that
M ek [ K for some L. There are two possible cases as follows:

1. M = catch v M’ *%%* catch v K = K,
2. M = catch v M’ **%* catch v (throw v K) — K,

where v ¢ FTV(K) in both cases. In the first case, since M 2 K, weget K€ (X, C) from
(6.4). In the second case, since M’ =% throw v K, we get K € (X, C) from (6.6). We now get
(6.1) by Lemma 6.1.29.

Next, we show (6.2). Suppose that N; € J(u, Al(u), V) for any i. Since v ¢ M, it is enough
to show that M € J(u, T(X, A"(u)), A" (u) U V) by Proposition 6.1.19, and we can assume
that v # u. Since A%(u) = A’'(u), by the induction hypothesis,

M' e J(u, (X, A (u)), A (u)UV). (6.7)

We apply Lemma 6.1.30. For the first premise, suppose that M’ *“¥ K = catch v K’ for
some K and K’'. We get K' € J(u, Z(X, A'(u)), A’(u) U V) from (6.7). Suppose that
w € FTV(K) and FIV(K)N (A”Y(v) UV) = {}. Since u € FTV(K'), FIV(K') = FIV(K)

and M’ = K’ we get K' = throw u L for some closed term L from (6.7). That is, K is

not a normal form. Therefore, the first premise is obvious from (6.7). For the second premise,

suppose that M ““&* L = K for some L. By the definition of e get M’ = K, and therefore,

K € J(u, Z(X, A"(u)), A" (u) U V) from (6.7). To show that the last premise holds, suppose

that M ¥4 [ — K for some L. There are also the two possible cases above. Since M’ = K

or M’ % throw v K, we get K € T (u, Z(X, A (u)), A" (u) UV) from (6.7). We now get
M e J(u, (X, A'(u)), A"(u)UV) by Lemma 6.1.30.
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Case 3: M = throw v M’ for some v and M’. That is, I'+ M':E; A’ is derivable for some
I, E and A’ such that I C T and A = A’ U {v: EP°"(I)} We can assume that A = A’ by
Proposition 5.4.13. By the induction hypothesis,

M eI(X, E). (6.8)

To show (6.1), we check the premises of Lemma 6.1.29. We have M € X'. For the second and
the third premises, suppose that M *“2* K. We show that K € D~ for the second premise. By
the definition of ¥, K = throw v K’ for some K’ such that M’ = K’. We get K’ € D~ from
(6.8). For the third premise, K € T~ (X, C) is obvious from the form of K. We also get the
fourth premise from (6.8). As for the last premise, it is impossible that M subx 1, — K by the
definition of **¥ and . We now get (6.1) by Lemma 6.1.29.

Next, we show (6.2). Suppose that N; € J(u, Z(X, Al(u)), V) for any i. By the induction
hypothesis,

M’ e J(u, Z(X, At(w)), Al(u) U V). (6.9)
We check the three premises of Lemma 6.1.30. For the first premise, suppose that M % K =
throw v K’. If u = v, then we get K’ € Z(X, E) = Z(X, A'(v)) from (6.8) since M = K'.
On the other hand, we get K’ € J(u, Z(X, A'(u)), A'(u) U V). from (6.9). Now, suppose that
ue FTV(K), FIV(K)N(A'(w) UV) = {} and K is a normal form. If u € FTV(K’), then we
get K’ = throw u L for some L from (6.9). Therefore, u ¢ FTV(K'), that is, u = v. We get

FIV(K") = {} from FIV(K)N(A"(v)UV) = {} and

FIV(K) C FIV(M’) C Dom(I") C Al(v).

Therefore, if w € FTV(K') for some w, then K/ = throw w L for some L, and this implies
that K is not a normal form. That is, K’ is a closed term. Thus, the first premise holds. For
the second premise, suppose that A7 *%2* [ = K for some L. By the definition of 2w we get
M’ = K, and therefore, K € T (u, Z(X, A'(u)), A¥(u) U V) from (6.9). Since it is impossible
that M *¥&* [ = K, we now get (6.2) by Lemma 6.1.30.

Case 4: M = Ay. M’ for some y and M’'. That is, TU{y:C1} F M’:C5; A is derivable for
some C and C5 such that C = C1 Dy and y ¢ AY(u) for any v € Dom(A). We can assume
that y ¢ V and y ¢ FIV(N;) for any i. Since y € Z(X, C1), by the induction hypothesis,

M €T(X, Cy). (6.10)

First, we show (6.1). We use Lemma 6.1.29. We have M € X. For the second premise,
suppose that M *“%* K for some K. By the definition of %, we get K = Ay. K’ for some K’
such that M’ % K’. We get K’ € D~ from (6.10). Therefore, the second premise holds. As for
the third premise, suppose that M = Ay. M’ *28* Xy. L. To show that Ay. L € I-(X, C1DCy),

suppose that K € Z(X, C1). By the induction hypothesis,
M'[Ny /21, .. Ny Jem, K 4] € T(X, Ca).

On the other hand, M'[Ny/xy,..., Ny /em, K/y] = M'[K/y] 2 L[K/y]. Therefore, L[K/y] €
I(X, C3). The fourth premise is also satisfied by (6.10). As for the last premise, it is impossible
that M *%2* L — K by the definition of s and . We now get (6.1).
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Next, we show (6.2). Suppose that N; € J(u, Z(X, A'(u)), V) for any i. Since y € J(u,
Z(X, A'(u)), V), by the induction hypothesis,
M’ € J(u, (X, Al(u)), A%(u) U V). (6.11)
Since y ¢ A¥(u), y ¢ V and y ¢ FIV(N;) for any i,

y ¢ A (w) U V. (6.12)

We apply Lemma 6.1.30. For the first premise, suppose that M *¥%* K = Ay. K'. We get

K' € J(u, Z(X, A'(u)), (A" (u) UV) — {y})

from (6.11) and (6.12). Suppose that « € FTV(K) and FIV(K) N (AY(v) UV) = {}. Since
FIV(K'")y C FIV(K) U {y}, we get FIV(K') N (A%(u) U V) = {} by (6.12). Therefore, K’ =
throw u L for some closed term L. This implies that K is not a normal form. Thus, the first

premise holds. For the second premise, if M *%&* [ = K for some L, then we get M= K, and
therefore, K € J(u, Z(X, A%(u)), A¥V(u) U V) from (6.11). Since the last premise is trivial, we

get (6.2) by Lemma 6.1.30.

Case b: M = My My for some My and My. Thatis, I''- M, : DD C; Aqgand I's - My : D A,
are derivable for some I'1, I's, D, Ay and As such that I' = 'y UT5 and A = A; U As. By the
induction hypothesis,

M, € I(X,D>C), (6.13)
M, € I(X,D). (6.14)

First, we show (6.1) by applying Lemma 6.1.29. We have M € X. For the second premise,
suppose that M *“2* K for some K. By the definition of %!, we get K = Ky K> for some K and
K5 such that My % K; and My = K5. We get Ky, Ky € D™ from (6.13) and (6.14). Suppose
that K is a normal form. We get FIV(K;) # {} since FIV(K;) = {} implies that

e Ky = throw v L and K v+ throw v L for some v and L, or
o Ky =Xy L and K — L[K3/y] for some y and L,

by (6.13). Therefore, K € D~. For the third premise, we similarly get that K is not a normal
form if M *¥%* K and FIV(K) = {}. The fourth premise is obvious from (6.13) and (6.14). As

subx
-

for the last premise, suppose that M L w— K, that is, for some y, L1 and Ls,

My My "% (My. Ly) Ly v Li[La/y] = K.
Therefore, K € Z(X, C') from (6.13) and (6.14). We now get
M, M, €Z(X, C) (6.15)

by Lemma 6.1.29.
Now, we show (6.2). Suppose that N; € J(u, Z(X, A%(u)), V) for any i. By the induction

hypothesis, 31 € 7(C, T(X, Af(w), A{(w) U V) and My € J(C, (X, Ab(u)), A3(u) U V),

Therefore, we get

My, Ms € J(u, Z(X, Al(u)), A" (w) UV).
Since X is admissible, we get M € J(u, Z(X, Al(u)), A¥(u)UV) from (6.13), (6.14) and (6.15).
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Case 6: M = kv. M’ for some v and M'. That is, T+ M':Cy; AU {v:CY'} is derivable for
some Cq, Cy and V' such that C = C; < Cy. We can assume that v ¢ FTV(N;) for any 4. Let
A’ beas A'=AU{v: C;I}. By the induction hypothesis,

M eT(x, Cy). (6.16)

To show (6.1), we check the premises of Lemma 6.1.29. We have M € X. For the second
premise, suppose that M *“2* K for some K. By the definition of ¢ we get K = kv. K’ for
some K’ such that M’ = K’. We get K/ € D~ from (6.16). Therefore, the second premise
holds. For the third premise, suppose that M = kv. M’ *¥%* kv. L. We show that kv.L €
I-(X, Cy«Cy). Since M =% L, we get L € I(X, Cy) from (6.16). On the other hand, we get

N; € J(v, Z(X, C3), {}) since v ¢ FTV(N;) for any i. Therefore, by the induction hypothesis,

M' € J(v, Z(X, Cy), A" (v)).
Since M’ = L, we get L € J(v, T(X, Cq), W), and therefore, L € J (v, Z(X, Cs), FIV(L))
by Proposition 6.1.21. As for the last premise, it is impossible that M *%&* L = K by the
definition of **¥ and . We now get (6.1) by Lemma 6.1.29.
Next, we show (6.2). Suppose that N; € J(u, Z(X, Al(u)), V) for any i. Since v ¢ M, it
is enough to show that M € J(u, Z(X, A’ (u)), A’”(u) U V) by Proposition 6.1.19, and we can
assume that v # u. Since A'(u) = A’"(u), by the induction hypothesis,

M’ € J(u, Z(X, A (u)), A (u) U V). (6.17)

We apply Lemma 6.1.30. For the first premise, suppose that M **%* K = xv. K’ for some K

and K'. We get K’ € J~ (u, Z(X, A (u)), A’ (u)UV) from (6.17). Suppose that u € FTV(K)
and FIV(K)N(A”(u)UV) = {}. Since u € FTV(K'), FIV(K') = FIV(K) and M’ 2= K', we
get K’ = throw u L for some closed term L from (6.17). Therefore, K is not a normal form.

Thus, the first premise holds. For the second premise, if M *“2* L = K for some L, then we get
K e J(u, Z(X, A(u)), A" (u)UV) from (6.17) since M’ = K. Since the last premise is trivial,

we get (6.2) by Lemma 6.1.30.

Case T: M = M'v for some M' and v. That is, I F M':C<aFE; A’ is derivable for some I,
E and A’ such that IV ¢ T and A = A’ U {v: EPo"T)} We can assume that A = A’ by
Proposition 5.4.13. By the induction hypothesis,

M €Z(X, C4E). (6.18)

To show (6.1), we check the premises of Lemma 6.1.29. We have M € X. For the second
premise, suppose that M *“2* K for some K. We show that K € D~. By the definition of ¥, we
get K = K’ v for some K’ such that M’ 2 K’. We get K’ € D~ from (6.18). If FIV(K) = {},
then we get K’ = throw v' L or K’ = xv'. L for some v' and L from (6.18), that is, K is not
a normal form. Thus, we get K € D~. For the third premise, we similarly get that K is not a
normal form if M *“%* K and FIV(K) = {}. The fourth premise is obvious from (6.18). As for
the last premise, suppose that M *%&* [ — K, that is, for some ¢" and 1/,

M’ v 28 (ko' L')w — L'lv/v'] = K.
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We get L' € Z(X, C) from (6.18) by the definition of Z(X', C< E), and therefore, K € Z(X, C)
since Z(X, C) is a regular type. We now get M € Z(X, C) by Lemma 6.1.29.

Next, we show (6.2). Suppose that N; € J(u, Z(X, A*(u)), V) for any i. By the induction
hypothesis,

M' e J(u, I(X, At(w)), A(u) U V). (6.19)

We apply Lemma 6.1.30. For the first premise, suppose that M *“2* K = K’v. We get K’ €

T (u, Z(X, Al(u)), A¥(u)U V) from (6.19). Suppose that u € FTV(K) and FIV(K)N(AY(u)U
V) = {}. We show that K is not a normal form. Since FIV(K') = FIV(K), we get

FIV(K'Yn (A" (w)U V) = {}.

If w e FTV(K'), then K’ = throw u L for some closed term L from (6.19), and this implies
that K is not a normal form. On the other hand, if v = v, then FIV(K') = {} since FIV(K) C

FIV(M') C Dom(I") C AY(v). Therefore, if K’ is a normal from, then K’ = throw w L or
K' = kw. L for some w and L by (6.18). This implies that K is not a normal form. Thus, the

first premise holds. For the second premise, if M *“2* L = K for some L, then we get M =K,

and therefore, K € J(u, Z(X, A'(u)), A¥(u) U V) from (6.19). As for the last premise, suppose
that M *4&* [ — K for some L and K, that is, M subs (ko' L)w — L'[v/v'] = K for some v/

and L'. We get

L' € J(u, T(X, Al(w)), A'(0) U V) (6.20)

from (6.19). If v # u, then L'[v/v'] € J(u, Z(X, A'(u)), AY(u) U V) by Proposition 6.1.22.
Therefore, we assume that v = u. We have L' € J(v, (X, E), FIV(L’),) by (6.18). Since

Al(u) = Al(v) = E and FIV(L') C FIV(M) C A%(v) = A%(u), we get

L'e J(v, T(X, Al(u)), A¥(u) U V)

by Proposition 6.1.20. Therefore, L'[v/v'] € T (u, Z(X, A*(u)), AY(u)UV) from (6.20) by Propo-
sition 6.1.22. We now get (6.2) by Lemma 6.1.30.

Case 8: M has one of the other forms. We similarly get (6.1) and (6.2) by Lemma 6.1.29 and
Lemma 6.1.30, respectively. [

6.2 An admissible frame

Definition 6.2.1 A tag dependency is a finite mapping which assigns a set of individual variables
to each tag variable in its domain. We use 6,8, ... to denote tag dependencies. Let uy,..., u,
be tag variables, and let Vi,...,V, be sets of individual variables such that if u; = u; then
Vi =V; for any i and j. We use {u1:V1,...,u,: V, } to denote a tag dependency whose domain
is {1, ..., u,} and which assigns V; to u; for each 1.

Definition 6.2.2 Let § and ¢’ be tag dependencies. We define a tag dependency 6116 as follows.

Dom(6 Ué') = Dom(8)U Dom(8")
8(u) U (u) if u € Dom(8) N Dom(é")
(bud(u) = 8(u) if w € Dom(8) and u ¢ Dom(8")

8 (u) if u ¢ Dom(8) and u € Dom(8")
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Definition 6.2.3 Let M be a term. Let U and é be a set of individual variables and a tag
dependency, respectively, where §(u) C U for any u € Dom(é). Frame judgements have the

following form.

Ul_fM;(s

Definition 6.2.4 We define a formal system for frame judgements.

— (var _ t
UU{x}l—fx;é( ) Ul—fc;é(wns)
Ub M 6Udu:V U by M6
! { ) (catch) ! (throw)
Uty catchu M ;6 Uy Uy by throw u M ; 6 U {u:U1}

Uu{z}bs M; 6
Uk Ae.M; 6

(D-1) (= ¢ 68(u) for any u € Dom($))

Ull_fM;(sl Uzl_fN;(SQ

D-E
UluUzl_fMN;(SlU(SZ ( )
Ul M 6uf{u:V U b M6
! { }(4-1) 1 (<)
Ubpru M;é UyuUs by Mu; 6U{u:Us}

Ull_fM;(sl Uzl_fN;(SQ

(A-T)
U1UU2|_f<M, N>;61|_|62
Ul‘f M;(S Ul‘f M;(S
- (A-E) - (A2-E)
Ul projy M ; 6 Uls projo M; 6
Ul‘f M;(S Ul‘f M;(S
— L (vi) ———— (Va-I)
Ubsinjy M ; 6 Utyinjo M; 6

Ull_fL;(Sl UzU{l‘}l_fM;(Sz U3U{y}|_fN;(53
UyUU,UUs by case L. M y.N; 6 U6 [Un /{z} U bs[U1/{y}]

(V-E)

We presents a some basic properties of this formal system.

Proposition 6.2.5 Let M be a term. Let T be an individual context, C a formula, and A a tag
context. If T'H M :C'; A is derivable, then Dom(T') by M ; AV is derivable.

Proof. Straightforward induction on the derivation of I'= M :C'; A. O

Proposition 6.2.6 If Uty M; & us dertvable, then FIV(M) C U and FTV(M) C Dom($).
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Proof. By induction on the derivation of Uy M ; 6. O

Definition 6.2.7 Let 6 and ¢’ be tag dependencies. We define a relation é§ C 6 as follows. The
relation 8 C &’ holds if and only if

e Dom(é) C Dom(é'), and
e 6(u) C &(u) for any u € Dom(§).

Proposition 6.2.8 Let Uk M ; 6 be a d-derivable frame judgement.
1. IfUCU and § T 6, then U' by M &8 is also d-derivable.

2. Ul{y}/{a}] by Mly/z]; 6[{y}/{x}] is also d-derivable.
3. If é[v/u] is well defined, then Uty Mv/u]; 8[v/u] is also d-derivable.
Proof. By simultaneous inductions on d. []

Proposition 6.2.9 Let © and u be as ¢ ¢ FIV(M) and u ¢ FTV(M).
1. If UU{z} by M; 6 is derivable, then U by M ; 6[{}/{x}] is also derivable.

2. If Uby M §u{u:V} is derivable, then U by M ; 6 is also derivable.
Proof. Straightforward induction on the derivations. []

Proposition 6.2.10 If Uy by N; & and Us U {z} by M; 8, are derivable, then Uy U Uy bk
M[N/«x]; 61 U 83[Ur/{a}] is also derivable.

Proof. By induction on the depth of the derivation of Uy U {#} k¢ M; 6. Suppose that
U k¢ N; 6 and Uy U {z} Fy M; 8, are derivable. First, suppose also that = ¢ FIV(M),
that is, M[N/z] = M. Since Uy U{x} F; M ; 8y is derivable, so is Uy k¢ M ; 82[{}/{«}] by Propo-
sition 6.2.9, and this implies that U3 UUs by M ; 61 U éo[Ur /{x}] is derivable by Proposition 6.2.8.
Therefore, we now assume that

x € FIV(M). (6.21)

By cases according to the form of M.

Case 1: M = y for some individual variable y. In this case, y € Uy U {a}. If M = z, then
we can derive Uy U Uy by M[N/2]; 61 U é2[Dom(Uy)/{z}] by applying Proposition 6.2.8 to the
derivation of Uy Fy N ; & since M[N/x] = N and C' = A in this case. If M # z, then we can
derive it by (var) since M[N/x] = y and y € Us in this case.

Case 2: M = catch u M’ for some v and M’. In this case, the following judgement is derivable
for some V.

UsU{atby M'; 60 {u:V}

We can assume that u ¢ Dom(81) by Proposition 6.2.8. By the induction hypothesis, we have a
derivation of

Uy U U by M[N/2]; 60U (62 U {u: VP [Dom(Uy)/{x}]. (6.22)

Since u ¢ Dom(81), we get M[N/x] = catch u (M'[N/z]). By applying (catch) to (6.22), we get
U1 U U2 l_f M[N/l‘] ; 61 L 62[DOTR(U1)/{$}]
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Case 3: M = throw u M’ for some v and M'. In this case, the following judgement is derivable
for some U and 6 such that U) C Uy U {a} and é; = § U {u:US}.

Uél_f M/; )

We get @ € FIV(M') from (6.21), that is, x € Uj. Let U be as U = U} — {x}. Note that
Uj) = U U {x}. Therefore, by Proposition 6.2.8,

Uu{z}ks M'; 6.
By the induction hypothesis, we have a derivation of
Uy UU by M'[N/x]; 6 US[UL /{x}].
Since M[N/xz] = throw u (M'[N/z]), by applying (throw),
Uy UUbR; M[N/z]; 6 Lé[U /{=} U {u:U; UTU}.
Since U C Us, by Proposition 6.2.8 again,
Uy WUy by M[N/2); 61 U8[U{x} U {u:U WU}

Note that §[U; /{z}]U{u: U, UU} = é2[U; /{x}] because §; = é U{u:UU{z}} and 2 ¢ U.

Case 4: M = Ay. M’ for some y and M'. In this case, y ¢ §2(u) for any v € Dom(é2) and the

following judgement is derivable.
U U{z}U{y} by M'; 69

We can assume that y ¢ U; by Proposition 6.2.8, and get M'[N/x] = Ay. (M[N/x]). By the

induction hypothesis, we have a derivation of
U1UU2U{y} l_f M/[N/l‘],(SlU(SQ[Ul/{l‘}] (623)

Since y ¢ 62(u) for any u € Dom(8y) and y ¢ Uy, we get y ¢ (61 U 62[U1/{x}])(u) for any
u € Dom(é1 U é2[U1/{x}]). Therefore, we can derive Uy UUs b Ay (M/[N/x]); 61 U 8 [Ur/{z}]
by applying (D-1) to (6.23).

Case 5: M has one of the other forms. Similarly, Uy U Uy by M[N/x]; 61 U 8:[Ur/{x}] is
derivable. [

Lemma 6.2.11 If Uty M; 6 is derivable and M v+ throw v N, then U by throw v N ; 6 s
also derwable.

Proof. By induction on the depth of the derivation of U ; M ; 6. Suppose that U k¢ M ; 6 is
derivable and M r> throw v N. By cases according to the form of M.

Case 1: M =z for some individual variable x. This is impossible because M + throw v N.
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Case 2: M = catch u M’ for some u and M’. In this case, the following judgement is derivable
for some V.

Uk M5 60 {u:V} (6.24)
We get u ¢ FTV (throw v N) and
M’ =throwv N or M’ = throw v N
from M + throw v N. Therefore, from (6.24) or the induction hypothesis on (6.24),
Ub; throwov N éU{u:V}.

We get U k¢ throw v N ; § by Proposition 6.2.9 since v ¢ FTV (throw v N).

Case 3: M = throw u M’ for some u and M’. In this case, the following judgement is derivable
for some U’ and ¢’ such that U’ C U and é =& U {u:U'}.

U'by M’ ¢ (6.25)

We get M’ = throw v N or M’ + throw v N from M +~ throw v N. Therefore, from (6.25)
or the induction hypothesis on (6.25),

U't; throw v N; §'.

We get U k¢ throw v N ; 6 by Proposition 6.2.8 since U’ C U and &' [C 6.

Case 4: M = Az. M' for some x and M'. In this case, z ¢ §(u) for any u € Dom(8) and the
following judgement is derivable.

Uu{ztby M5 6 (6.26)
We get z ¢ FIV(throw v N) and
M’ =throwv N or M’ = throw v N
from M + throw v N. Therefore, from (6.26) or the induction hypothesis on (6.26),
UU{z}ts throw v N; 6.

We get U k¢ throw v N ; § by Proposition 6.2.9 since & ¢ FIV (throw v N).

Case 5: M has one of the other forms. Similarly, U I throw v NV ; ¢ is derivable. [J
Lemma 6.2.12 If Uty M; 6 1s derivable and M v N, then Uty N ;6 1s also derivable.

Proof. By induction on the depth of the derivation of U ; M ; 6. Suppose that U k¢ M ; 6 is
derivable and M +— N. By cases according to the form of M.

Case 1: M = catchu N and u ¢ FTV(N). In this case, Ul N; U {u:V} is derivable for
some V. We get U F N ; é by Proposition 6.2.9 since u ¢ FTV(N).
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Case 2: M = catch u (throw u N) and v ¢ FTV(N). The following judgement is derivable
for some V, U’ and ' such that U C U and é U {u:V} =& U {u:U'}.

U/ l_f N; (S/
Since U C U and ¢’ C éU{u:V}, U k¢ N ;6U{u:V}is derivable by Proposition 6.2.8. Therefore,
Uk N; & is also derivable by Proposition 6.2.9 since v ¢ FTV(N).

Case 3: M = (Aw. My) My and N = M[My/z] for some &, My and M. The following two
judgements are derivable for some Uy, Uy, 61 and 65 such that U = Uy U Us, 6 = 61 U é2 and
z & é1(u) for any u € Dom(6).

U1 U {l‘} l_f M1 ; 61 (627)
U2 l_f Mz; 62 (628)
We get U by Mi[My/x]; 6o U 61[Us/{x}] from (6.27) and (6.28) by Proposition 6.2.10, where
82 L1861 [Us/{x}] = é since x ¢ 81 (u) for any v € Dom(8,).
Case 4: M = (ku. M")v and N = M'[v/u] for some u, v and M’. The following judgement is
derivable for some U’ §' and V such that U’ C U and § = 8 U {v:U'}.
Uty M'; 8 U {u:V}

By Proposition 6.2.8, U’ by M'[v/u]; §'[v/u] U {v:V} is derivable, and since U’ C U, by Propo-
sition 6.2.8 again,

Uty M'[v/ul; 8'[v/u] U {v:V}.
Since V.C U’ and ¢'(u) C U,
Sofuluf{v:ViCédw/ulu{v: Uy & ufv:U} =6

Therefore, U ¢y M'[v/u]; 6 is derivable by Proposition 6.2.8.

Case 5: M has one of the other forms. Similar. []

Lemma 6.2.13 If Uy M ; 6 is derwvable and M — N, then Uty N ; 6 1s also derivable.
Proof. Straightforward from Lemma 6.2.11 and Lemma 6.2.12. ]

Proposition 6.2.14 If Uty M ; 6 s derivable and M — N, then U Fp N ; 6 s also derivable.

Proof. By induction on the depth of the derivation of U ; M ; 6. Suppose that U k¢ M ; 6 is
derivable and M — N. If M — N, then trivial by Lemma 6.2.13. Therefore we can assume
that M — N and M £ N. By cases according to the form of M. A typical one is the case that
M = throw u M’ for some u and M’. In this case,

Uk M'; &

is derivable for some U’ and &' such that U’ C U and § = ¢ U {u:U’}. Since M — N and
M+ N, M'" — N’ and N = throw u N’ for some N’. Therefore, U’ k¢ N'; ' is derivable
by the induction hypothesis. We get U ¢ throw u N'; § by applying (throw). The proofs for
other cases are just similar. ]
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Definition 6.2.15 We define a set of term Xy as follows:
Xo={M|Uk; M; 6is derivable for some U and §}.
Proposition 6.2.16 X is a frame.

Proof. Xy is a type by Proposition 6.2.14, and is regular by Proposition 6.2.8. z € A for any
x, since {z} k¢ x; {} is derivable. On the other hand, M, N € Xy implies M[N/x] € Xy by
Proposition 6.2.10. Finally, by Proposition 6.2.5, we get M € Ay for any term M such that
I'F M:C; A is derivable for some I', C and A. []

Definition 6.2.17 Let n be a natural number, u a tag variable, and 7" a type. We define
T (u, T, V) as follows.

o if M = throw u K, then K € T,

e if M is a normal form such that w € FTV(M) and FIV(M)NV = {}, then M = throw u
L for some closed term L,

o if M =catchv L and v # u, then L € J,(u, T, V),

e if M = throw v L, then L € J,(u, T, V),

o if M =Xy. L, then L € T(u, T, V —{y}),

o if M = Ly Lo, then Ly, Ly € Ju(u, T, V),

o if M = <Ly, Ly>, then Ly, Ly € Ju(u, T, V),

e if M = proj,; L for some i (i = 1,2), then L € J,(u, T, V),
e if M =inj, L for some ¢ (i = 1,2), then L € J,(u, T, V),
o if M = case Lg y1.L1 y2.L2, then

— Lo € Tp(u, T, V), and

— for any 7 (i = 1,2), there exists some V; such that V/[FIV(Ly)/{y;}] C V and
L; € jn(ua T, Vil)a

e if M =kv.L and v # u, then L € J,(u, T, V), and
o if M =Lu, then L € Tp(u, T, V).
Proposition 6.2.18 M € J,(u, T, V) if and only if
if M 22 K for some k (k<n) then M € J,_,(u, T, V).
Proof. Obvious from the definitions.
Lemma 6.2.19 Let n be a natural number, u a tag variable, and T a type. If
1. M *F K gmplies K € T (u, T, V),

2. M subxk p r Koamplies K € Jpop-1(u, T, V), and
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3. if M L K for some L, then K € Jn_p—1(u, T, V),

then M € Jn(u, T, V).

Proof. Suppose that M *£ K. There are three possible cases as follows:
1. M sub=k |

2. M 2% M[throw v L/z] > throw v L *k=l=1 K for some M’, z, v and L such that
z € FIV(M') and M' # z,

3. M sub pp =L **=l=1 K for some M’ and L.

It is enough to show that K € J._ ,(u, T, V). In the first case, we get K € J__,(u, T, V) from
the first premise. In the second case, K € J_,(u, T, V) because throw v L € J,_1_1(u, T, V)
by the second premises. As for the third case, L € J,_;—1(u, T, V) from the last premise.
Therefore, K € J,_,(u, T, V). O

Lemma 6.2.20 Let M and N be terms. Let n be a natural number, u a tag variable, and T a
type. If

1. Uk M5 6 s drivable,
2. M e Tn(u, T,V —A{z}),
3. N ey,
4. N €Tn(u, T, V),
5.« ¢ 6(u), and
6. M[N/z] €D,

then M[N/z] € Tp(u, T, V).

Proof. By induction on the lexicographic ordering of n and |M|, and by cases according to the
form of M. Suppose that U k¢ M ; § and N € Xy are drivable, M, N € J,(u, T, V), = ¢ 6(u)
and M[N/z] € D.

Case 1: M =y for some individual variable y. Trivial because M[N/ax] = M or M[N/x] = N
in this case.

Case 2: M = catch v M’ for some v and M’'. We can assume that v ¢ FTV(N)U {u}, that is,
M[N/z] = catch v (M'[N/z]). Since U k¢ M ; 6 is derivable, U Fy M'; é U {v:V'} is derivable
for some V'. On the other hand, we get M’ € J,(u, T, V — {2}) from M € T, (u, T, V — {2}),
and get @ ¢ (6U{v:V'})(u) from 2 ¢ §(u) because u # v. Therefore, by the induction hypothesis,

M'[N/2] € Tn(u, T, V). (6.29)

We use Lemma 6.2.19 to show that M[N/z] € J,(u, T, V). For the first premise, suppose that
M[N/z] 2 K = catch v K’ for some K and K’. We show that K € J,_, (u, T, V). We
get K' € J_p(u, T, V) from (6.29). Suppose that w € FTV(K) and FIV(K)NV = {}. Since
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u € FTV(K'), FIV(K') = FIV(K) and M'[N/z] = K', we get K’ = throw u L for some
closed term L from (6.29), and therefore, K is not a normal form. Thus, the first premise holds.
For the second premise, suppose that M[N/z] “x=F [, = K for some L. By the definition of sub
we get M'[N/z] *22! K. Therefore, K € Jn_;_1(u, T, V) from (6.29). For the last premise,
suppose that M[N/x] ““&F [, — K for some k (k < n) and L. There are two possible cases.

1. catch v (M'[N/x]) **2** catch v K = K,
2. catch v (M'[N/x]) & catch v (throw v K) = K,

where v ¢ FTV(K) in both cases. In the first case, since M'[N/x] ““ZEF K we get K €
Tn_k_1(u, T, V) from (6.29). On the other hand, in the second case, since M'[N/x] $ubxk!
throw v K, we also get K € Jp_p_1(u, T, V) from (6.29). Thus, the last premise holds. We
now get M[N/x] € To(u, T, V) by Lemma 6.2.19.

Case 3: M = throw v M’ for some v and M'. In this case, M[N/z] = throw v (M'[N/x]).
Since U by M ; § is derivable, U’ k¢ M’ ; &' is derivable for some U’ and ¢’ such that U’ C U and
8§ =8 U{v:U’'}. We can assume that § = &' by Proposition 6.2.8. Note that FIV(M’) C U’. On
the other hand, M’ € J,(u, T, V — {a}) from M € J,(u, T, V — {x}). Since x ¢ §(u) = 8'(u),
by the induction hypothesis,

M'[N/z] € Tp(u, T, V). (6.30)

We apply Lemma 6.2.19. For the first premise, suppose that M[N/z] 4 K = throw v K’ for
some K and K’. We show that K € J~ ,(u, T, V). We get K' € J  (u, T, V) from (6.30).
If w = v, then we get M[N/x] = M since # ¢ é(u) = §(v) D U’ D FIV(M'), and therefore,
K' e T from M € Jo(u, T, V — {x}). Next, suppose that w € FTV(K), FIV(K)nV = {}
and K is a normal form. If w € FTV(K'), then we get K’ = throw u L for some L from
(6.30). Since K is normal, we get v ¢ FTV(K’), that is, v = v and M[N/z] = M, again.
This implies that K’ is a closed term since M € Jp(u, T, V — {x}). For the second premise,
suppose that M[N/z] %=k [, + K for some L. By the definition of b e get M/[N/x] "2 K|
and therefore, K € Jp_p—1(u, T, V) from (6.30). For the last premise, it is impossible that
M[N/x] 54k 1, — K by the definition of b and . Therefore, we get M[N/x] € Tn(u, T, V)
by Lemma 6.2.19.

Case 4: M = Ay. M’ for some y and M’. We can assume that y ¢ FIV(N), that is, M[N/z] =
Ay. (M'[N/z]). Since U Fy M ; § is derivable, sois UU{y} by M'; 6. We get M' € Tp(u, T, V —
{e} —{y}) from M € T,(u, T, V — {z}). On the other hand, N € F,(u, T, V — {y}) since
y & FIV(N). Therefore, by the induction hypothesis,

M'[N/z] € To(u, T, V —{y}). (6.31)

We use Lemma 6.2.19 to show Ay. (M'[N/z]) € Tn(u, T, V). For the first premise, suppose
that M[N/z] ““¥ K. By the definition of Y we get K = Ay. K’ for some K’ such that
M'[N/z] 2% K'. We get K' € J_p(u, T, V —{y}) from (6.31). On the other hand, suppose that
u € FTV(K), FIV(K)NV ={} and K is a normal form, that is, u € FTV(K"), FIV(K')n(V —
{y}) = {} and K’ is normal. Therefore, K’ = throw u L for some closed term L from (6.31),
and this implies K+ K’ that is, a contradiction. Thus, the first premise holds. For the second
premise, suppose that M[N/z] “F [, = K for some L, that is, M'[N/z] *i41 K Therefore,
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K € Jnp—1(u, T,V — {y}) from (6.31). We get K € J,_—1(u, T, V) by Proposition 6.1.11.
Since the last premise is trivial, we get M[N/z] € Jp(u, T, V) by Lemma 6.2.19.

Case 5: M = My My for some My and M. In this case, M[N/z] = (M1[N/x]) (M2[N/x]).
Since U ¢ M ; 6 is derivable, Uy by My 5 61 and Us by My 62 are derivable for some Uy, Us, 6;
and é2 such that U = U; U U and & = &; U é2. We also get My, Ma € Jp(u, T, V — {z}) from
M € Jp(u, T, V = {x}). Therefore, by the induction hypothesis,

My[N/z], Mo[N/z] € Tn(u, T, V). (6.32)

We use Lemma 6.2.19. For the first premise, suppose that M[N/z] ““F K = K; K, that
is, M;[N/x] *& K, for any i (i = 1,2). We get K1, Ko € Jn_z(u, T, V) from (6.32). On the
other hand, suppose that v € FTV(K), FIV(K)NV = {} and K is a normal form, that is,
u € FTV(Ky), FIV(K;) NV = {} and K; is normal for some . Therefore, K; = throw u
L for some closed term L from (6.32), and this implies K v K;, that is, a contradiction. For
the second premise, suppose that M[N/x] %22k I, = K for some L, that is, M;[N/z] *htl [ for
some ¢ (i = 1,2). We get K € Jp_—1(u, T, V) from (6.32). For the last premise, suppose that
M[N/x] bk 1, — I, that is, for some y, L; and Lo,

(M1 [N/a]) (Ma[N/a]) 2% (Ay. Ly) Ly v L[La/y) = K.

By Proposition 6.1.10, we get Ay. Ly € Tp—p(u, T, V) and La € Tp_p(u, T, V) from (6.32).
Therefore, Ly € Tp—p(u, T,V — {y}) and L2 € Fu_i(u, T, V). By Proposition 6.1.10 and
Proposition 6.1.11,

L, Ly € Tnpa(u, T, V). (6.33)

On the other hand, U’ Fy My[N/x]; ¢ is derivable for some U’ and & by Proposition 6.2.10
since My, N € Xy, and therefore U’ F; Ay. Ly ; §' is also derivable by Proposition 6.2.14 since
Mi[N/x] = Ay. Ly. That is,
U'u{ytts L; 8 (6.34)
is derivable and
y & &' (u). (6.35)
As for Ly, we get Ms[N/z] € Xy from Ms, N € Xy by Proposition 6.2.10. That is, Ly € Xy by

Proposition 6.2.14. Moreover, we get L1[Ls/y] € D from M[N/z] € D since M[N/z] = L1[Ly/y].
Therefore, by the induction hypothesis, we get

K = Ll[Lz/y] € jn—k—l(ua Ta V)

from (6.33), (6.34) and (6.35). Thus, the last premise also holds. We now get M[N/z] €
TIn(u, T, V) by Lemma 6.2.19.

Case 6: M = xkv. M’ for some v and M'. We can assume that v ¢ FTV(N) U {u}, that is,
M[N/z] = kv.(M'[N/z]). Since U k¢ M ; é is derivable, sois U Fy M'; § U {v:V'} for some
V’. On the other hand, we get M’ € T (u, T, V — {x}) from M € J,(u, T, V — {x}), and get
¢ (6U{v: V' (u) from z ¢ é(u) because u # v. Therefore, by the induction hypothesis,

M'[N/2] € Tn(u, T, V). (6.36)
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We use Lemma 6.2.19 For the first premise, suppose that M[N/z] *“™f K = xv. K’. We show
that K € 7, (v, T, V). We get K’ € J_,(u, T, V) from (6.36) since M'[N/z] *®ORIf
w € FTV(K) and FIV(K) NV = {}, then since u € FTV(K'), we get K' = throw u L
for some L from (6.36), that is, K is not normal. Therefore, the first premise holds. For the
second premise, suppose that M[N/x] ¥ L + I for some L. By the definition of b we
get M'[N/z] **+1 K and therefore, K € J,_x_1(u, T, V) from (6.30). Since the last premise is
trivial, we get (6.2) by Lemma 6.2.19.

Case T: M = M'v for some M' and v. In this case, M[N/z] = (M'[N/z])v. Since U ¢ M ; &
is derivable, U’ Fy M’ ; ¢’ is derivable for some U’ and ¢ such that U’ C U and 6 = &' U{v:U'}.
We can assume that § = §' by Proposition 6.2.8. Note that FIV(M') C U’. On the other hand,
M € To(u, T,V —{a}) from M € Tp(u, T, V — {x}). Since z ¢ 8(u) = &'(u), by the induction
hypothesis,

M'[N/z] € Tp(u, T, V). (6.37)

We use Lemma 6.2.19 For the first premise, suppose that M[N/xz] 2 K = K’ v. We get K’ €
T p(u, T, V) from (6.37) since M'[N/zx] =k K'. Suppose that w € FTV(K) and FIV(K)NV =
{}. We show that K is not normal. If u € FTV(K'), then K = throw u L for some closed term
L by (6.37). On the other hand, u ¢ FTV(K’) implies u = v, and therefore, M[N/x] = M since
z ¢ 6(u) =6(v) DU D FIV(M'). Therefore, K is not normal since M € J(u, T, V — {z})
and M *2 K = K’v. For the second premise, suppose that M[N/z] “x=F [, = K for some L. By
the definition of ¢ we get M'[N/z] **+' K and therefore, K € Tn—p—1(u, T, V) from (6.37).
For the last premise, suppose that M[N/x] ““&F [, — K, that is, for some L’ and w,

M'[N/x] v subzk (kw.L')v— L'v/w] = K. (6.38)

We can assume that w # u. Since M'[N/z] *£ kw. L, we get kw.L' € Jn_p(u, T, V) from
(6.37), that is,
r S jn—k(u, T, V)

Therefore, if v # u, then we get K = L'[w/v] € Jn—p(u, T, V) by Proposition 6.1.14, that
is, K € Jo_x—1(u, T, V) by Proposition 6.1.10. On the other hand, if v = wu, then we get
MIN/x] = M since ¢ ¢ 8(u) = 6(v) D U D FIV(M'). Therefore, K € Jp_p-1(u, T, V)
since M € Jn(u, T,V — {x}) and M **#! K. Thus, the last premise holds. We now get
MIN/xz] € To(u, T, V) by Lemma 6.2.19.

Case 8: M has one of the other forms. The proof is similar. []
Theorem 6.2.21 Xg s an admissible frame.
Proof. Since X is a frame by Proposition 6.2.16, we show that A} is admissible. Suppose that

M, NeXynNJy(u, T, V), and (6.39)
M N €D. (6.40)

By Proposition 6.1.17, it is enough to show that

MN € Ju(u, T, V).
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We use Lemma 6.2.19. For the first premise, suppose that M N 2 K — K, K,, that is,
M 22 K, and N 2% K,. We get Ky, Ky € Tpop(u, T, V) from (6.39). On the other hand,
suppose that v € FTV(K), FIV(K)NnV = {} and K is a normal form. Since u € FTV(M)
and FIV(K1)NV ={},oru € FTV(N) and FIV(K;)NV = {}, we get M = throw u L or
N = throw u L for some closed term L from (6.39), and this implies K = throw u L, that
is, a contradiction. For the second premise, suppose that M N ¥ = K for some L, that
is, M "5 K or N *®1 K. We get K € J,—p_1(u, T, V) from (6.39). For the last premise,
suppose that M N 2% [ + K, that is, for some y, L1 and Ls,

M N 88 (Xy. Ly) Ly v— Ly [Lo/y] = K.

We get Ay. Ly € Tp—p(u, T, V) and Ly € Tp_p(u, T, V) from (6.39) by Proposition 6.1.10.
Therefore, Ly € Jn—i(u, T, V —{y}) and Ly € Jp_3(u, T, V). By Proposition 6.1.10,

Ll € jn—k—l(ua Ta V- {y})a (641)
Ly € jn_k_l(u, T V) (642)

On the other hand, Ay. L1 € Xy by Proposition 6.2.14 since M * Ay. L. That is, for some U
and 6,
UUu{yt by Ly 6 (6.43)

1s derivable and
y ¢ 5(u). (6.44)

As for Lo, we get Ly € Xy by Proposition 6.2.14 since N € Xy. Moreover, we get Li[Ls/y] € D
from M N € D since M N = Li[Ly/y]. Therefore, by Lemma 6.2.20, we get

Li[La/y] € Tnp—1(u, T, V)

from (6.41), (6.42), (6.43) and (6.44). Thus, the last premise also holds. Therefore, we get
MN € Ju(u, T, V) by Lemma 6.2.19.

6.3 Strong normalizability and normal forms

We get strong normalizability of well-typed terms from the discussion on the term model. The
term model also provides a results on the form of well-typed normal forms.

Theorem 6.3.1 Let M be a term. If ' M :C; A s derivable for some I', C and A, then M
1s strongly normalizable.

Proof. Since x € T(Xy, I'(x)) for any & € Dom(T'), M € Z(Xy, C) by Theorem 6.1.33 on Aj.
Therefore, M is strongly normalizable by the definition of Z(Xy, C). O

Theorem 6.3.2 Let M be a normal form such that FIV(M)={}. If TF M :C; A is derivable
for some I', C and A, then one of the following holds.

1. M = throw u L for some closed term L.

2. C is an atomic formula, and M is a constant.



6.4 Realizability interpretation of L./, 85

3. C=ADB for some A and B, and M = Ay. L for some y and L.

4. C=AAB for some A and B, and M = <Ly, Ls> for some Ly and Ls.
5. C= AV B for some A and B, and M = inj; L for some ¢ (i =1,2) and L.
6. C = AdB for some A and B, and M = kv. L for some v and L.

Proof. Let x1,..., 2, be as Dom(T') = {#1,..., 22}, and suppose that T = M :C'; A is deriv-
able. Since FIV(M) = {}, {} F M :C; A[{}/{x1}, ..., {}/{xm}] is also derivable by Proposi-
tion 5.4.14. Therefore, by Theorem 6.1.33 on A},

M € Z(Xy, C)N T (u, Z(Xo, A'(u)), {})

for any u. Since M is normal and FIV(M) = {}, if u € FTV(M), then M = throw u L for
some closed term L. On the other hand, if FTV (M) = {}, then one of 2 through 6 holds since
M €T~ (X, C) and FIV(M) = {}. O

6.4 Realizability interpretation of L.,

Let X be an admissible frame, and let A be a mapping which assigns a subset of Const to each
atomic type. The realizability for L.;; is defined relatively to A" and A.

Definition 6.4.1 (Realizability of types) Let M be a term, and A a type. We define a

relation r between terms and types as follows.
MrA it MeZ(x, A).

Definition 6.4.2 (Realizability of tag contexts) Let M be a term, and A a tag context.

We define a relation r between terms and tag contexts as follows.
Mr A iff forany u, M € J(u, Z(X, Al (u)), A¥(u)),
where Z(X', Al(u)) = {} and AY(u) = {} if u ¢ Dom(A).

Definition 6.4.3 (Interpretation) We define the interpretation of typing judgements as fol-

lows. The relation
{1 AL, A EM:C 5 {ur i By, .. u,: BV}

holds if and only if for any terms Ki, ..., K, such that K; v 4; and x; ¢ FIV(K;) for any i and
j(1<i,j<m),

1. M[Ki/z1,...,Kn/2m)r C, and

2. if K; v A for any ¢ (1 < ¢ < m), then

MK Jx1,..., Km/ep) v A[FIV(Ky)/{z1}, ..., FIV(Kn)/{xm}]-

The following soundness theorem assures us that we can regard the derivations of L./, as

programs which satisfy the specification defined by the realizability interpretation defined above.

Theorem 6.4.4 (Soundness of L.;;) If T+ M :C; A s derivable in L.y, then T E M :C; A
holds.

Proof. Straight forward from Theorem 6.1.33.



Chapter 7

Concluding remarks

We have presented two typing systems Lfﬁv and L.j; which capture the catch/throw mechanism

in the notion of “proofs as programs”. Although they are just variants of the standard construc-
tive logic, they admit extra conclusions besides the main one. By this feature, we can naturally
construct proofs which handle the exceptional situations efficiently as in practical programming
languages. We showed the direct correspondence between such proofs and programs which make
use of the catch and throw mechanism by certain realizability interpretations. The soundness
theorems of the systems relative to these interpretations assure that they can still be basises for
the formal method of computer programming. Moreover, the non-determinism introduced with
the catch and throw mechanism does not break this paradigm, because we can take the mean-
ings of programs by a realizability interpretation independent of the evaluation strategy, that is,
reductions do not preserve the meaning of programs as values, but do preserve the meaning as

realizers.

From a computational point of view, the catch and throw mechanism provides only a restricted
access to the current continuation, and does not provide the full access as the first class objects.
Therefore, it could be regarded as a trivial subcase of more powerful facilities such as call/cc
of Scheme. However, from the viewpoint of the notion of “proofs as programs”, it assures
correct programs without any of the restrictions required for the case of such more powerful ones
[11, 20, 21]. And more importantly, the catch and throw mechanism has a natural counterpart
in the reasoning of programmers, that is, a characteristic way of exception handling. We doubt
whether there also exists such a natural reasoning corresponding to the use of call/cc and its

variants beyond the catch/throw.

From the viewpoint of program verification, our work can be regarded as a higher-order ex-
tension of the work concerning goto statements in Hoare’s logic, whose main idea is also the
existence of extra post-conditions [1, 2]. However, it should be noted that our work captures
the logic of programmers behind the facilities for non-local exit rather than their computational
behavior. In this sense, the catch and throw mechanism is just a sample of possible realizers for
our logic.

There remain some problems which have not been discussed in this thesis. We have considered
only a propositional fragment, and have not investigated the relation between the catch and throw
mechanism and mathematical inductions. Actually, the mechanism is often used in subroutines
that call themselves recursively in practical programming. We could expect that the standard
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rules for mathematical inductions would work as well from just a logical point of view, but more
intensive investigation of the practice should be done in order to capture the class of proofs, that
1, the class of programs, used in practical programming.
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