A Constructive Formalization of
the Catch and Throw Mechanism

Hiroshi Nakano
Faculty of Science and Technology
Ryukoku University
Seta, Otsu, 520-21, Japan
nakano@rins.ryukoku.ac.jp

Abstract

The catch/throw mechanism is a programming con-
struct for non-local exit. In the practical programming,
this mechanism plays an important role when program-
mers handle exceptional situations. In this paper we
give a constructive formalization which captures the
mechanism in the proofs-as-programs notion. We in-
troduce a modified version of LJ equipped with infer-
ence rules corresponding to the operations of catch and
throw. Then we show that we can actually extract pro-
grams which make use of the catch/throw mechanism
from proofs under a certain realizability interpretation.
Although the catch/throw mechanism provides only a
restricted access to the current continuation, the for-
mulation remains constructive in contrast to the works
due to Griffin and Murthy on more powerful facili-
ties such as call/ce (call-with-current-continuation) of
Scheme.

1 Introduction

The catch/throw mechanism provides a facility for
non-local exit. We can find examples of the mecha-
nism in some practical programming languages such
as C-language [4] and Common Lisp [9]. This mecha-
nism plays an important role when programmers han-
dle exceptional situations. Suppose, for example, we
have to construct a program P with a specification
represented by a sequent I' — C' VvV E of LJ combin-
ing three subprograms @ : '—=AVE, R :TA—
BVE and S : I'B—CVE, where C is the normal
output for the input I', and £ is an error signal which
denotes that there is something wrong in the input.
The specifications of @, R and S say that such er-
rors may be detected in the execution of these subpro-
grams. Under this situation, the construction of P in

LJ would be as Figure 1, where applications of struc-
tural rules are omitted. The constructed program P
would work as follows. The program P first calls the
subprogram @ and gets its return value, then checks
the value whether it denotes an error or not. If not,
P calls the subprogram R with that value and gets
its return value. P again checks the value and calls S
if 1t does not denote an error. Eventually, P returns
the value returned by S. If P detects an error in the
values returned by @ or S, it immediately returns a
value denoting an error. We can find an inefficiency
that whenever P gets values from the subprograms it
must check them whether they denote a error or not.
This is often found in the practical programming with-
out the catch/throw mechanism. If the mechanism is
available, programmers can concentrate on the main
stream of programming as if there must not happen
any exceptional situation since error signals are passed
through bypasses provided by the mechanism. Follow-
ing the proofs-as-programs notion in the opposite di-
rection, we can find that the problem comes from the
restriction of LJ that only one formula is admissible
to the right hand side of sequents. If the restriction is
dropped like LK, we can construct P’ of a specifica-
tion ' —C' F from subprograms Q' : T—AF, R :TA
—BEFE and S’ :TB—CFE as follows:

"R 25

Q' TA—BE FBHCE("

I —AE FA=CE (o) e
T—CE ’

where structural rules are omitted again. The proof
is much simpler than the previous one and easy to
develop. The point is that exceptional conclusions
are admitted beside the main conclusion and we can
proceed the proof construction as if they do not ex-
ist. It reflects the programmer’s reasoning behind the
catch/throw mechanism. Of course, we must justify

- S

‘R I'B—CVE E—CVE EV—>)

(init)

FrA—BVE

(init)

- Q TA—CVE

I'BVE—-CVE (cu

E—F V)

I'—AVE

I'AVE—CVE (

2 E—CVE EV_;)

I'—=CVE

cut),

Figure 1: Exception handling without catch/throw.

(init) NoAidy TaA=CiRs
A—>A, F1F2—>C;A1A2

T—A;A1BCA,
T—A;A;CBA,

(—2)

1 ABT,—C; A
T BAT. = A &)
[BAT,—C; A
F1—>A;A1 F2—>B,A2
Fl F2—>A/\B;A1 Az

(=)

I'—A;A
I—AVEB;A

I'—B;A

(=V1) T—AVE.A

TA—B;

I—A;FEA
T— A EA

Ty AAT,—C; A
FlAFQHC,A

TA—C;A
TAAB—C,A

(—V2)

r—A;A

I'—E;A

I—A;AA
T—AEA

(throw) T—4A.A

(catch)

I'—A;A
I—A;FA

(—0)

(—w)

I'—=c;A

(=) A—ca (W7
IB—C;A

(A=) TANB—C:A

(A2—)

FlA—>C;A1 FQB—>C,A2
Fl FzA\/B—>C;A1 Az

(V=)

FQB—>C;A2

T—i55 ()

T ADB—C; A1 Ay

FlA—>B;A1

(O—)

FQEHC;AQ

Fl F2A<1E—>C,BA1 Az

(<—)

Figure 2: Inference rules.

such a logic constructively so that correct programs
can be extracted from the proofs. In the following sec-
tions, we present such an attempt to extract a logical
structure from the programmer’s reasoning concerning
exception handling by the catch/throw mechanism.

2 The formal system

We introduce a sequent calculus to capture the
catch/throw mechanism. But it is not important
whether the formalization is done by the sequent cal-
culus style or not. We adopt such a style here just
for convenience of readers who are familiar with the
correspondence between classical logic and control op-

erators such as call/cc, for it becomes clear when we
regard our formal system as an intermediate system
between LJ and LK. We are also able to consider a
natural deduction style formalization, and it would be
more suitable for natural development of programs.

We restrict the logic to a minimal propositional
logic in this paper since the restricted system is enough
for us to observe the essence how the mechanism
Note that it can be easily extended to the
predicate logic.

works.

Formulas Formulas of our system consist of atomic
formulas, conjunctions (A A B), disjunctions (A V B),
implications (A D B) and exceptions (A< B). The last
one is introduced to handle the catch/throw mecha-
nism and represents another kind of disjunction. We

give a precise meaning to the connective « by a real-
izability interpretation later.

Sequents Sequents of the system are of the form:
AlAmHC,ElEn,

where m and n can be 0. They look like the ones of LK
rather than LJ ignoring the semicolons “;” between C'
and Fq...FE,. Actually, their purely logical mean-
ing is the same as LK. In this sense, the semicolons
are negligible. But they play a certain role for the
constructive meaning of the sequents. The formula C
between the arrow and the semicolon represents the
main conclusion and F ... F, represent exceptional
conclusions. The sequent A;...A4,,—C;E|...E, rep-
resents a program such that when we execute the pro-
gram supplying values that satisfies the specification
Ay ... Ay for the corresponding free variables of the
program, it normally returns a value which meets C|
otherwise the program exits with a value which meets
one of Fy...E,. Note that if n = 0, i.e. Fq...F, is
empty, the meaning of the sequent is just the same as
the usual interpretation of the sequent of LJ.

Inference rules The inference rules of the formal
system are listed in Figure 2. If we ignore semicolons
in the sequents, they are almost the same as the ones of
LK except for the logical rules concerning the new con-
nective <. The only essential difference is that there
must be exactly one formula on the right hand side of
the sequent when we apply the right-implication rule
(—D). Roughly, our system can be regarded as the
propositional fragment of LK with this restriction on
the right-implication rule. But it should be also noted
that every right logical rule introduces a logical con-
nective into the formula between the arrow and the
semicolon, i.e. the main conclusion.

3 A realizability interpretation

Before discussing the syntactical properties of the
formal system, we give an example of realizabil-
ity interpretation of the system to explain how the
catch/throw mechanism can be captured in it. The
interpretation 1s defined by an abstract machine
which manipulates expressions equipped with the
catch/throw mechanism. We start with the definition
of the expression syntax.

Constants and variables We first assume the fol-
lowing disjoint sets of individual constants, individual
variables, tag constants and tag variables are given,

where the set of tag constants is a representation of
the set of natural numbers. We use 7 to denote the
tag constant which represents a natural number n, and
t to denote the natural number represented by a tag
constant ¢.

C. A set of individual constants ¢,d,....

V. A countably infinite set of individual variables
.Y, 2.

C; A set of tag constants 0,1,2,....

Vi A countably infinite set of tag variables u,v, w,....

Tags Tag constants and tag variables are called tags.
We denote the set of tags by T'. That is,

T == C | V.
We use s,t,... to denote tags.

Expressions Expressions F are defined as follows.

E = C.| V. |letV.=E.E | EE | AV..E
| <E,E> | proj1E | projo £
| inj{E | injoE | caseEV,.EV,. . E

|

throwTE | catchV,E | ET | kV,.E

The expressions £ V;.E and ET are used for tag-
abstraction and tag-instantiation, respectively. We
use e, f,... to denote expressions. Free and bound oc-
currences of variables are defined in the standard man-
ner. We regard a tag variable u as bound in catchue
and ku.e. We use e[M/z] to denote the expression
obtained from an expression e by replacing each free
occurrence of a variable by an expression or a tag

M.

An abstract stack machine We now define an
abstract machine which evaluates expressions. The
machine is designed only to illustrate how the
catch/throw mechanism works. We leave other mech-
anisms required for the evaluation of expressions being
abstract (cf. [5, 8]). It has a stack of expressions and
a special symbol denoted by * which may appear only
at the top of the stack. The state of the machine is de-
termined only by the state of this stack. We represent
a state of the stack as follows.

bottom «—
[61, €9, €3, ...

— top
bl en’ M]’

where €;...e, are expressions and M is an expression
or the special symbol .

Transition rules The abstract machine changes its
state as follows:

[Azca e,] = [F, ealer /o]
[f,letx_el es] = [f, Az.eq,eq]
[f1,--; fn,-.., throwne] = [f1,..., fa, €]
[f1,-- ,fn,catchue] = [f;, o Jn,e[n/u]]
[f <ep,es>] = [f, <ep,es>, %]
[f,proji <er,es>] = [f,e1]
[F,projy <er,ea>] = [f, es]
[inj1e] = [F imp e,
[f,lnjze] = [Jlnjze,*]
[f,case(lnjle)x e1y.es] = [j::e [e/z]]
[f, case(injge) . ery-ez] = [f, eale/y]]
[f Az.e] = [f, Az.e, %]
[, (Az.er)es] = [erles/a]]
[f,ffu e] = [f, ku.e,*]
(F, eue)t) = [F,elt/ul
[f.e] = [fie.4],

where fdenotes a sequence of expressions. The rule
applicable for a state is uniquely determined by the
object at the top of the stack. Let = be the transitive

reflexive closure of the relation =. If [e;] = [es,4],
the expression es is unique modulo alpha-conversion.
This represents that e; is the head normal form of
e1. We denote it by Eval(e;) = e2. It should be
noted that the machine has no evaluation strategy
for the expressions except for let-expressions. For ex-
ample, there is no rules to apply when an expres-
sion ((Az.z)(Az.z))c is the top object of the stack.
To get ¢ as the result of evaluation, the expres-
sion should be lety=(Az.z)(Az.z).yc. The machine
first evaluates e; of letz=e;.e2 to get its head nor-
mal form, then proceed to the evaluation of e; with
it. Only let-expressions determine the evaluation or-
der. We must specify the evaluation order of expres-
sions by let-expressions explicitly. Note also that let-
expressions are the only expressions that push some-
thing to the stack. The expressions fi...f, of the
stack [f1, ..., fn,e] must be of the form of lambda-
abstraction, and the composition of fi...f, represents
the continuation after the evaluation of the expression
e (cf. [2]). The catch/throw mechanism of the ma-
chine provides a restricted access to the continuation
through tags. Although it does not provide a way to
treat it as a first class citizen as in Scheme, 1t does not
require any explicit copying of the control context.

Realizability interpretation of formulas We
now define a realizability for formulas using the ab-
stract machine. Let A be a mapping which assigns a

subset of C, to each atomic formula. Let e and 4 be
an expression and a formula, respectively. We define
the realizability relation denoted by e r A between
expressions and formulas as follows.

1. er Aiff e € A(A), if A is an atomic formula.

2. er AjNAy iff e = <ey,eq> for some e; and es
such that e; r A; and eg r A,.

3. er A VA, iff e = inj, e’ for some ¢ (i = 1,2) and
e'r A;.

4. er Ay DAs iff e = Aw.e! and Eval(e'[f/z]) v Ay
for any expression f such that fr A;.

5. er A1<As iff e = ku.e/ and one of the following
holds.

(a) Eval(e'[f/u]) v Ay for any natural number
n.

(b) [fla cee fna cee fn-l—ma el[ﬁ/u]] :*>
[f1,--, fn,e” %] and ¢’ v A, for any natural
numbers n and m.

If the relation holds between an expression and a
formula, we say that the expression realizes the for-
mula, and the expression is a realizer of the formula.

Realizability interpretation of sequents We
now consider a triple which consists of a sequence of
individual variables of length m, an expression and a
sequence of tag variables of length n for each sequent
Ay A,—C;By...B,. We assume the free individ-
ual and tag variables of the expression are included in
the two sequences. We define a realizability relation
r between such triples and sequents as follows. The
relation

<&y B, e,UL. Uy > A AL—C BBy,

holds if and only if one of the following two holds for
any natural number [, expressions fi,...,fi,91,--.,9m
such that ¢; r A1, ..., gm v A, and tag constants
t1,...,tn such that to <1, ..., t, <.

—

L. [fla"'aflae[ﬁ/f’t 1_1’] :*> [fla"'

[fla afla [ﬁ/f’fu :*>[f1a aft ,6 *] and e’ I‘B
for some 7 (0 < ¢ < n),

Ji,e'] and ¢’ v C.

where the expression e[§/Z, /@) stands for
elgr/®1, . gm/®m, 1 /U, ... ln/u,]. I the relation
holds between a triple and a sequent, we say that the
triple realizes the sequent, and the triple is a realizer
of the sequent. Note that this definition of realizabil-
ity is essentially the same as the standard realizability

definition of LJ in the case that the formula C does
not include any occurrence of < and B ...B,, is empty.
It should also be noted that the logical connective «
corresponds to the semicolon of a sequent as so does
D to the arrow.

Soundness of the formal system The following
soundness theorem assures us that we can regard the
proofs of the formal system as programs which satisfy
the specification defined by the realizability interpre-
tation of the conclusion.

Theorem 1 If a sequent is derivable in the formal
system, we can construct a realizer of the sequent.

Realizer construction The theorem is proved by
induction on the structure of the derivation. For ex-
ample, if (catch) is the last inference rule of the deriva-
tion of a sequent I'— A; A, we have a realizer of I'—
A; AA by the induction hypothesis. Let < #,e,uv >
be the realizer. We can take < &, catchue, v > as the
realizer for the conclusion. We only summarize how
to construct the realizer according to the derivation to
Figure 3 here, and omit the details of the proof. Note
that the let-expressions included in the constructed re-
alizers direct the evaluation of the expressions in call-
by-value fashion.

4 The formal system as a logic

In this section we discuss the basic property of the
formal system considering it as a logic. First we con-
sider the new logical connective «.

Definition 2 We use A to denote the formula ob-
tained from a formula A by replacing every occurrence
of the logical connective < by V. If A = B, then we
denote it by A~ B. If ' = Ag...A,, A = By...B,
and A; ~ By for any i (0 <4 < n), then we denote it
by I' ~ A

Lemma 3 If A ~ A’, then A—A’; 15 a drivable se-
quent of the system.

Proof. Straightforward induction on the structure of
the formula A. The basic idea comes from the follow-
ing two derivations.

- ind. hyp. - ind. hyp.
A— A" B— B
A—AVE B—AVE:
AdB—ANB ANV
A<B—AVE

(—V1) (—V2)

(a—)
(catch)

“ind. hyp.
“ind. hyp. B—DB’;
A— A B—A"; B’
ANVB—A B
wB_vap. Y

(throw)
(V=)

Theorem 4 If '—A;A is a derivable sequent of the
system, and if [=TV, A~ A" and A =~ A/, then I'
— A" A’ is also derivable.

Proof. Induction on the structure of the derivation of
the sequent I' = A; A. Apply Lemma 3 in the case that
the last rule is (init). 0O

The theorem says that the logical meaning of A<B is
essentially the same as AV B. The difference between
them consists only in their implementation.

If we 1dentify A<«B with AV B, the formal system
can be regarded as a variant of the propositional frag-
ment of LJ.

Theorem 5 A sequent Ay ... A, —C; is derivable in
the system of and only of Ay... Ay, —C 1s derivable in
(the propositional fragment of) LJ.

Proof. The if part is trivial because the propositional
fragment of L.J can be regarded as a subsystem of ours.
For the only if part, prove the following conjecture
by induction on the structure of the derivation: If
A1 A, —C By .. FE, is derivable, then Al...ANm—>
CVE\V..VE, is derivable in (the propositional frag-
ment of) LJ. The theorem is a corollary of the con-
jecture. [

As a corollary of the theorem, we get the disjunc-
tion property of the system.

Corollary 6 If — AVDB; is a derivable sequent, then
we can derive —A; or —B;.

There must be no formulas on the right hand side
of the semicolon when we apply the right-implication
rule (—D). This restriction is the most significant
difference from LK, and it keeps the system construc-
tive. LK with this kind of restrictions is known as
a variant of LJ, which is essentially equivalent to LJ
(cf.[6, 10, 11]). The same restriction is also required
for (—V)-rule in the case of predicate calculus. If we
dropped the restriction, the system would become a
classical one.

The cut-elimination theorem holds for the formal
system.

Theorem 7 If a sequent is derivable, then we can de-
rive it without (cut)-rule.

< Ze,U> <yzeqt> < Ze,v> < Ze,ut >
N [AN, TaA—C:A, I—E:A T—A:AA
Ty (init) T.T,—C.A A, (cut) T—A.TA (throw) T—A.A (catch)
<z x> < ¥y, letz=ey.e9, 0V > < Z,lety=e.throwuy,uv > < ¥,catchue, v >
< Z,e,iviva W > < Ze, V> < Ze uyus >
LA BCA, roAa ToAEEA
— — —_——— (—e¢
T—A,A,CBA, \ © T—A,EA Y T—AEA
< Fe,dvovi W > < Feutv > < Ze[ufuy,ufus],ut >
< Zyrys 2 e, > < Ze, > < Zyry=7, e, >
LABI—CA P=CGA LAAT—GA
— — c—
L BAT,—C.A * Ta—c.a [AT, —C A

< Bysy1 Z,e,U >

< Zep, U > < yen, >

F1—>A;A1 F2—>B;A2
F1F2—>A/\B;A1A2

< Zyletzy=ei.letza=eo.<z1,29>, UV >

(=)

<f,6,a> <5},e,ﬁ>
I'—A;A v I'—B;A
T—AVB;A (=V1) T—AVB;A

< Zlety=e.injq y, 4 >

< Zy,e,>
I'A—B;

I'—=ADB;

< ¥, y.e,>

(—2)

< Ze ut >
T=AEA
T—A<E:A
< Z,ku.e, v >

(—9)

TAAB—C A
< Zy,letz=projyy.c,d >

(—V2)

< Z,lety=e.injoy, i >

< fyZ,e[y/yl,y/yz],U>

< Xz e d >
TB_-C:A
TAANB—C.A
< Zyletz=projoy.e, i >

(A2—)

<le,61,ﬁ> <3722,62,17>
FlA—>C,A1 FQBHC,AQ

F1F2AVB—>C;A1A2
< PYz,casezzy.eiz9.65, UV >

(V=)

< X, > < §lien, V>
F1—>A;A1 FQB—>C,A2

T, AoB—C.A A, O

—

< Tyz, etz =ei letz' =z22" . eq, U0 >

<le,61,17> <g22,62,u_;>
FlA—>B;A1 FQEHC,AQ

(<—)
Fl F2A<1E—>C,BA1 Az

< Zyz,letzg=(catchw'letzy =z w' . letz' =e;.throwuz’).eq, ud@ >

Figure 3: Realizer construction.

We omit the proof for lack of space. The proof be-
comes more complicated than the case of LI/LK be-
cause it required a special condition to apply (—D)-
rule and the new connective < has been introduced.
Unfortunately, the computational behavior of the
catch/throw mechanism is not captured by the cut-
elimination process. Consider the following simple ex-

ample.
a4 “j:)
A—>A;AE :O];”))
714_)14’ catc

< z,catchu(lety=z.throwuy), >

It 1s a cut-free derivation, but the realizer includes a
catch-throw pair. Another kind of proof translation
should be considered to explain the mechanism.

5 Some comments on the formalization

As mentioned above, sequents of our formal sys-
tem can be regarded as the ones of LK ignoring semi-
colons. Let us compare the system with LK. First,
there must be at least one formula on the right hand
side of sequents. But this comes from that the system
1s a minimal logic and is not an important difference

for us.

The three right-structural rules of LK are divided
into five rules, and there is no right-exchange rules
over the semicolon. The rules (catch) and (—c¢) cor-
respond to the right-contraction rule of LK. The for-
mer introduces a catch-expression. The latter means a
sharing of one tag variable by two throw-expressions,
i.e. multiple throw-expressions would be caught by
one catch-expression afterwards. The right-weakening
rule of LK is divided into (throw) and (—w). The
former corresponds to a throw-expression. The latter
means an introduction of a redundant tag variable.
We note that the rule (—w) is a derived rule of other
rules.

< Ze,v>

I'—A;A
T—L.AA (throw)
TS A EAA (throw)
T—A.ALA %)
T—apa (catch)

< Z,catchw
(lety=(letz=e.throwwz).throwuy),uv >

But we adopt (—w) as a primitive rule because the
realizer given above introduces a redundant throw-
expression, 1.e. a throw-expression never visited.
We do not have a right-exchange rule over the semi-
colon, but it is also a derived rule as follows.
< e u >
r—A;EA
I—E;AEA
I—E;FAA
—E;AA
< Z,catchu(lety=c.throwovy),vw >

(throw)
(—w)

(catch)

In contrast to (—w), we leave it as a derived rule be-
cause there is no primitive realizer construction corre-
sponding to the rule.

We have a restriction on (—D)-rule to keep the sys-
tem constructive as mentioned before. If we dropped
the restriction, the following anomaly would occur.
Consider the following derivation of AV(ADB).

(init)

A—A;
(—V1)

A—AV(ADB);
A—B; AV(AD B)
—ADB;AV(ADB)

—AV(ADB);AV(ADB)
—AV(ADB);

(—D)
(—Va)
(catch)

The realizer would be catchu (lety=XAz.(letz=(let
t'=z.injq «').throwuz).injo y). Removing redun-
dant let-expressions, we get catchu injo (Az.throwu

(injq)). The evaluation process of the expression
would be as follows.

[Azi.eq,...,Azn.en, catchuinjo (Az.throwu(injq 2))]
= [Az1.e1,...,Azp.en,injo (Az.thrown(injq z)),]
= [Azper,.. ., Azy_1.6n_1,

enlinjo (Az.thrown(injq x))/x,]]

Note that the tag constant 7 in the last 18 meaning-
less because the the corresponding control context has
been lost. From a computational point of view, this
problem can be solved by introducing more powerful
facilities for non-local exit such as call/cc of Scheme.
But it affects the realizability interpretation of formu-
las. For example, although the realizers of disjunctions
still have a certain constructive meaning yet, they do
not always contain the information which formula of
AV B isrealized by them (cf. [3, 7]). It should be noted
that the system without the restriction becomes a clas-
sical one, and we do not have the disjunction property
anymore.

The restriction on (—D)-rule leads us to introduce
the new connective 4. We can not construct any func-
tion that may throw something to the outside of the
function without the new connective. Such a function
is represented by a formula of the form AD(B<E), and
is called with a value for A and a tag for £. Normally,
the function returns a value of B, otherwise it throws
a value of F to the given tag. Concerning the left logi-
cal rule of «, there 1s another possibility of formulation
as follows: . .

<zrz,ev>
FrA—C;A
TA«E—C;EA
< Zy,letz=yu.e,ut’ >

(<—)

From the viewpoint of realizer construction, it cor-
responds to a more primitive construction than the
original one listed in Figure 2, and is easy to under-
stand for programmers. But it requires (cut)-rule to
be equivalent to the original. So the cut-elimination
theorem does not hold if we substitute it for the origi-
nal. This is the only reason why we adopt the original
formulation.

6 Conclusion

We have presented a formal system which captures
the catch/throw mechanism in the proofs-as-programs
notion. Although the system is just a variant of LJ,
it admits extra conclusions beside the main one. So
we can construct proofs which handle the exceptional
situations efficiently. We showed that we can actually

extract programs that make use of the catch/throw
mechanism from such proofs. Our work can be re-
garded as a higher order extension of the work con-
cerning goto statements in Hoare logic (cf. [1]), whose
main idea 1s also the existence of extra post-conditions.

Although, from a computational point of view, the
catch/throw mechanism provides only a restricted ac-
cess to the current continuation, we can extract cor-
rect programs without any restriction required for the
case of more powerful facilities such as call/cc (cf.
[7]). And more important, there exists a characteristic
way of programmer’s reasoning concerning exception
handling behind the mechanism. We wonder whether
there also exists such a reasoning corresponding to the
use of call/cc and its variants beyond the catch/throw.

Acknowledgements

The author wishes to thank Susumu Hayashi for
a great number of helpful suggestions and invaluable
encouragement regarding this work. He pointed out
the connection between this work and the literature
concerning variants of LJ and the treatment of goto
in Hoare logic. Thanks are also due to the referees
for helpful comments on the detailed abstract of this

paper.

References

[1] S. Alagi¢ and M. A. Arbib, The Design of
Well-Structured and Correct Programs, Springer-
Verlag, 1978.

[2] M. Felleisen, D. Friedman, E. Kohlbecker, and
B. Duba, A syntactic theory of sequential con-
trol, Theoretical Computer Science, Vol. 52(3),
pp. 205-237, 1987.

[3] T. G. Griffin, A formulae-as-types notion of con-
trol, Conf. Rec. ACM Symp. on Principles of
Programmang Languages, pp. 47-58, 1990.

[4 B. W. Kernighan and D. M. Ritchie, The C
programming language (2nd ed.), Prentice Hall,
1989.

[5] P. J. Landin, The mechanical evaluation of ex-
pressions, Computer Journal, Vol. 6(4), 1964.

[6] S. Maehara, Eine Darstellung intuitionistic Logik
und der Klassishen, Nagoya Math. Journal, Vol.
7, pp. 45-64, 1954.

[7] C. R. Murthy, An evaluation semantics for clas-
sical proofs, Proc. IEEE Symp. on Logic in Com-
puter Science, pp. 96-107, 1991.

[8] G. D. Plotkin, Call-by-name, call-by-value and
the A-calculus, Theoretical Computer Science,
Vol. 1, pp. 125-159, 1975.

[9] G. L. Steele, Common Lisp: The Language, Dig-
ital Press, 1984.

[10] K. Schiitte, Vollstindige Systeme Modaler und
Intuitionestischer Logik, Springer-Verlag, 1968.

[11] G. Takeuti, Proof theory (2nd ed.), North Hol-
land, 1987.

